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This result appears in the forthcoming text-
book [4] as well as in the book chapter [3].

The (universal) no-broadcasting theorem states
that there exists no quantum process ∆ from 1 sys-
tem to 2, such that, for any quantum state ρ, discard-
ing (i.e. tracing out) either system of ∆pρq yields ρ
itself [2]. This theorem has been generalised within
the context of generalised probabilistic theories in [1].
Here, we generalise it within the context of process
theories. For more background on the process theory
framework and other details we refer to [3].

1 Background

A string diagram consists of a collection of boxes
which can have some inputs, depicted as wires coming
in the bottom of a box, and some outputs, depicted
wires coming out of the top. We allow arbitrary con-
nections between boxes, including those from inputs
to inputs, and outputs to outputs:
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String diagrams can furthermore be reflected verti-
cally:
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indicating the adjoint of the diagram. A process the-
ory is an interpretation of all diagrams made up of
a fixed collection of boxes (as well as their adjoints)
and wires. A two-system state ψ is b-separable if
there exist states ψ1 and ψ2 such that:

“ ψ1 ψ2ψ

and that a process f is ˝-separable if there are effect
π and state ψ such that:

f “
ψ

π

Suppose we have a ˝-non-separable process, and
imagine that it has some internal structure, say a
collection of tubes connecting some inputs to outputs:

If we now compose this process with its vertical re-
flection, then these internal connections match up:

so one expects the resulting process also to be ˝-non-
separable. That is:
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We call this rule dagger-connectedness.

Example 1.1. For linear maps, ˝-separable means
rank-1. So, dagger-connectedness follows from the
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fact that the rank of f : ˝ f is the same as the rank of
f . However, this fails for relations. Consider:

R :“ tp0, 0q, p0, 1q, p1, 1qu Ď t0, 1u ˆ t0, 1u

Clearly R is ˝-non-separable, but R: ˝ R is ˝-
separable.

By a quantum system we mean a wire of the form:

:“

A pure quantum process is of the form:

“pf ff

while a general quantum process is of the form:

ffpf “ (1)

where we used discarding:

:“

2 Main result

Consider a process theory that admits string dia-
grams and obeys dagger-connectedness.

Proposition 2.1. If a reduced state of ρ (i.e. a state
arising from discarding some part of ρ) is pure:

ρ
“ pφ (2)

then ρ b-separates as follows:

ρ = ρ1
pφ

Proof. Writing ρ in the form (1):

ρ “ ψψ (3)

and substituting this into (2) we obtain:

ψψ

“
φφ

Deforming this equation we get:

“

φ

φ

ψ

ψ

Then, by dagger-connectedness there exist ψ1, ψ2 s.t:

“

ψ2

ψ1

ψ

Plugging in to (3) yields the required separation:

ψ1ψ2 ψ2ψ1

“
ψ1 ψ2 ψ2ψ1

Then, substituting into (2) we can conclude that
pψ2 “ pφ.

Proposition 2.2. If a reduced process is pure:

Φ “ pf (4)
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then it b-separates as follows:

Φ “ ρ pf (5)

Proof. Bend the wire in (4):

Φ
“ pf

By Proposition 2.1 it separates as follows:

Φ “ ρ pf

Unbend the wire and we’re done.

Theorem 2.3. If there is a quantum broadcasting
process, that is, a quantum process ∆ s.t.:

∆
“

∆
“
(l) (r)

(6)

then every plain wire ˝-separates, and consequently,
every process ˝-separates. Consequently, non-trivial
process theories cannot have such a process.

Proof. By equation (6l) the reduced state of ∆ is
pure, so by Proposition 2.2 we have:

∆ “ ρ (7)

for some state ρ. Hence it follows that:

∆
“

ρ

“

(6r) (7)

3 Discussion

Clearly the crux of this result is the influence of
dagger-connectedness on the ‘doubled’ form of quan-
tum processes.

In fact, we know that dagger-connectedness is
strictly stronger than no-broadcasting since the pro-
cess theory obtained from ‘doubling’ relations also
satisfies no-broadcasting [5], yet relations themselves
fail dagger-connectedness, as we saw in Example 1.1.

Furthermore, with the help of so-called ‘spiders’ for
capturing the interaction with classical data, many
other results arise from dagger-connectedness [4]. No-
table examples are the existence of entangled states:

Φ2Φ1‰ρ

and the fact that pure process cannot arise from non-
trivial convex mixtures of processes:
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