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We explore how the qualitative hierarchy of strengths of contextuality introduced in [3] relates to the
quantitative notion of the non-contextual fraction of an empirical model. We show that this provides a
fully general quantitative measure of contextuality, applicable to any empirical model, which is related
to the maximal possible violation of generalised Bell inequalities. The calculation of this measure, as
well as finding such witnessing inequalities, can be formulated as linear optimisation problems. We have
implemented these methods and used them to explore the degree of non-locality of empirical models
arising from local equatorial measurements on the |φ+〉 Bell state and the n-partite GHZ states.

1 Introduction
The sheaf theoretic framework introduced in [3] provides a unified approach to non-locality [9] and con-
textuality [10, 15], in which the latter is seen to be a generalisation of the former, in the general setting of
no-signalling empirical models. In this setting, a natural, qualitative hierarchy of contextuality was also
shown to arise, which can be succinctly defined with reference to the set Se(X) of global assignments (of
outcomes to the global set of measurements X) that are consistent with a given empirical model e.

The highest level in the hierarchy is strong contextuality, which was shown to be equivalent to a
straightforward generalisation of the notion of maximal non-locality [13] which we refer to as maximal
contextuality [3, Proposition 6.3]. A maximally contextual model admits no non-degenerate decomposition
into a convex combination of a non-contextual (or local) model and another model. In this sense, it is
meaningful to talk about the non-contextual fraction of any no-signalling empirical model.

In this paper, we shed further light on how the notion of non-contextual fraction relates to the sheaf-
theoretic description of contextuality, with strong contextuality arising naturally as the (possibilistic) limit
of this notion. It can be seen that any model can be decomposed as a convex combination of a non-
contextual and a strongly contextual model1 – the proportion of this mixture serves as a quantitative grading
between non-contextuality and strong contextuality. This provides a (quantitative) measure of contextu-
ality which, as we will show, is related to the maximal violation of generalised Bell inequalities. This can
be understood as providing a substantial generalisation, to empirical models in any measurement scenario,
of the amount by which a (2,2,2) Bell model violates the CHSH inequality [11].

We show that linear programming methods may be used to calculate this measure of contextuality
for any empirical model, as well as to find Bell inequalities for which the maximal violation is attained.
We stress that these methods are fully general and apply in any measurement scenario, including of course
all Bell-type scenarios. The methods described have been implemented as part of a Mathematica package
with computational tools for analysing empirical models. Computational exploration using these tools can
be useful, for example, in attempting to classify non-local states [4], which is a goal of future research.

As a demonstration of how the package works, we use it to explore the non-locality of empirical models
arising from the |φ+〉 Bell state and the n-partite GHZ states. In this way, we find new sets of measurements
on the state |φ+〉 which give rise to empirical models that achieve the maximum violation of the CHSH

1This implies, in particular, that only models of these kinds may be vertices of the polytope of no-signalling models for a given
scenario. We study the combinatorial structure of such no-signalling polytopes more comprehensively in [2].
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inequality, as well as new sets of measurements on the n-partite GHZ states that lead to similar logical
proofs of non-locality.

Outline Section 2 summarises the main aspects of the sheaf-theoretic framework, introducing empirical
models and the hierarchy of levels of contextuality. Section 3 discusses the idea of non-contextual fraction
in analogy to that of consistent global assignments. In Section 4, the task of calculating the non-contextual
fraction is phrased as a linear programming problem. In Section 5, it is shown how this measure of con-
textuality relates to maximal violation of general Bell inequalities, using the dual linear program. Finally,
Section 6 presents the results of computational explorations of some quantum empirical models. Some of
the proofs are in Appendix A; see also [16, 7].

2 Empirical models and contextuality
We briefly summarise some of the main aspects of [3].

Measurement scenarios are abstract descriptions of a set of possible experiments. A measurement sce-
nario is a triple 〈X ,M ,O〉 where: X is a finite set of allowed measurements, O is a finite set of outcomes,
and M is a cover of X representing the compatibility of measurements. Each C ∈M is called a mea-
surement context and corresponds to a set of measurements that can be performed together. Examples of
measurement scenarios include multipartite Bell-type scenarios familiar from discussions of non-locality,
Kochen-Specker configurations, and more. For example, the usual (2,2,2) Bell scenario, where two exper-
iments, Alice and Bob, can each choose between performing one of two different measurements, say a1 or
a2 for Alice and b1 or b2 for Bob, is represented as follows:

X = {a1,a2,b1,b2} O = {0,1}

M = {{a1,b1},{a1,b2},{a2,b1},{a2,b2}} .

The event sheaf E : P(X)op −→ Set is defined by E (U) := OU for each U ⊆ X , i.e. E (U) contains all
functional assignments of outcomes to the measurements in U , and the maps E (U ′ ⊆U) : E (U)−→ E (U ′)
are the obvious restrictions.

An empirical model represents a set of empirical observations for a given measurement scenario. For
each valid choice of jointly performable measurements (i.e. measurement context), it specifies the proba-
bilities of obtaining each joint outcome.

Given a commutative semiring R, we write DR : Set−→ Set for the R-distribution functor, which takes
a set X to the set of R-valued distributions on X . The composition DR ·E is a presheaf such that DRE (U) is
the set of R-distributions over the joint assignments of outcomes to the measurements in U and restriction
DRE (U ′ ⊆ U) is given by marginalisation of distributions. A (probabilistic) empirical model is then a
compatible family on DR≥0E for the cover M . More explicitly, it is a family of probability distributions
{eC ∈DR≥0X}C∈M whose marginals agree wherever contexts overlap, i.e.

∀C,D∈M . eC|C∩D = eD|C∩D .

This is a generalisation of the usual no-signalling condition. An example of an empirical model for the
(2,2,2) Bell scenario mentioned above is represented in the following table of probabilities.

A B 00 01 10 11
a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

(1)

This model arises from quantum mechanics by choosing the following two-qubit Bell state

|φ+〉= |↑↑〉+ |↓↓〉√
2
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and the following local measurements available to each experimenter on their respective qubit:

a1 = b1 =

(
0 1
1 0

)
, a2 = b2 =

(
0 e−i π

3

ei π
3 0

)
.

Fix a measurement scenario 〈X ,M ,O〉. Given two empirical models e and e′ and a value r ∈ [0,1], we
can define a convex sum

re+(1− r)e′

contextwise by setting (re′+(1− r)e′′)C := re′C + (1− r)e′′C for each C ∈M . It is easy to verify that
compatibility is preserved by such convex combination, hence this yields a well-defined empirical model.
A empirical model e is said to be extremal if it does not admit a non-degenerate convex decomposition,
i.e. if it cannot be written as e = re′+(1− r)e′′ with e′ and e′′ two distinct empirical models and r ∈ (0,1).

We now present the hierarchy of contextuality (and of non-locality, as a special case) introduced in [3]
(see also [17, 1]).

Definition 2.1. Let e be an empirical model. For any U ⊆ X , we write Se(U) for the set of assignments of
outcomes to the measurements in U that are consistent with the model e:

Se(U) := {s ∈ E (U) | ∀C∈M . s|C∩U ∈ supp(eC|C∩U )} ,

where supp gives the support of a distribution. In particular, Se(X) = {g ∈ E (X) | ∀C∈M . g|C ∈ suppeC}
is the set of global assignments consistent with the model e.

Definition 2.2. An empirical model e is said to be:

• (probabilistically) contextual if there the family of distributions cannot be extended to a global
probability distribution on E (X), i.e. there is no d ∈DR≥0E (X) such that ∀C∈M . dC = eC.

• logically contextual if there is a possible local assignment that cannot be extended to global assign-
ment consistent with e, i.e. ∃C∈M ,s∈suppeC . ∀g∈Se(X). g|C 6= s.2

• strongly contextual if there is no global assignment consistent with e, i.e. Se(X) = /0.

Note that the non-contextual models are those that can be written as a convex combination of determin-
istic empirical models of the form δg for a global assignment g ∈ E (X), where δg is given at each context
C ∈M by the delta-distributions (δg)C := δg|C .

3 Quantifying contextuality

3.1 Global assignments consistent with a fraction of events
In dealing with possibilistic versions of contextuality (both logical contextuality and strong contextuality),
an important rôle was played by the set Se(X) of consistent global assignments, comprising those global
assignments whose restriction to each measurement context is an event deemed possible according to the
empirical model e. By possible, one means that the probability of that assignment of outcomes is not zero.
But if one wants to take into account the actual probabilities with which these restrictions occur, and so to
consider global assignments that are consistent with at least a certain percentage of occurring events, then
the following generalisation seems natural.

Definition 3.1. Given an empirical model e on a scenario 〈X ,O,M 〉, for any U ⊆ X and r ∈ (0,1] we write
S≥r

e (U) for the set of assignments of outcomes to the measurements in U that are consistent with (at least)
a fraction r of the events of e:

S≥r
e (U) := {t ∈ E (U) | ∀C∈M . eC|C∩U (t|C∩U )≥ r} .

2This is equivalent to saying that the possibilistic collapse of the {eC} is not extendable to a global possibilistic (i.e. boolean)
distribution on E (X).
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As is clear from the discussion above, we shall mostly care about the case when U = X ,3 in which the
defining expression above reduces to

S≥r
e (X) = {g ∈ E (X) | ∀C∈M . eC(g|C)≥ r} .

It is clear that the sets
(
S≥r

e (X)
)

r∈(0,1] form an anti-monotone family: if r ≤ r′ then S≥r
e (X)⊇ S≥r′

e (X).
Moreover, their union recovers the usual possibilistic notion of consistent assignment:⋃

r∈(0,1]
S≥r

e (X) = Se(X) . (2)

This union can be seen as a limit towards r = 0. At the opposite extreme, S≥1
e (X) contains at most one

assignment g, and it is non-empty exactly when the model e is deterministic, i.e. of the form δg.4

The point is that a global assignment in S≥r
e (X) can explain away a fraction r of the model, as is made

precise by the proposition below. This simple observation can be seen as the contextualised version of the
trivial fact that if p is a distribution on a set Y and p(y)≥ r for some y ∈Y , then p can be decomposed as a
mixture of the form p = rδy +(1− r)p′ for some other distribution p′.

Proposition 3.2. Let e be an empirical model on a measurement scenario 〈X ,Om,Σ〉. Given r ∈ (0,1] and
g ∈ S≥r

e (X) a global assignment consistent with a fraction r of events of e, then the model e has a convex
decomposition of the form e = rδg +(1− r)e′ for some other model e′.

Proof. We use the observation above at each context, obtaining for each σ ∈ Σ a distribution e′σ on E (σ)
satisfying

eσ = rδg|σ +(1− r)e′σ = r(δg)σ +(1− r)e′σ .

The fact that both δg and e satisfy the compatibility (no-signalling) condition implies, by virtue of it being
a linear condition, that so does this new family of distributions, making e′ an empirical model.

3.2 Consistent subdistributions

However, the notion of S≥r
e above falls short of the full rôle of Se(X) in the possibilistic case because the

explanations provided are not cumulative, in the sense we now describe. If g1 and g2 are two (possibilisti-
cally) consistent global assignments, and so provide a possibilistic explanation for two parts of the model,
then jointly they explain both parts together5. However, things are different in the probabilistic realm: if
g1 ∈ S≥r1

e and g2 ∈ S≥r2
e , so that gi explains a fraction ri of the model for i∈ {1,2}, then it is not necessarily

the case that we can consider these two explanations at the same time, taking g1 and g2 together to explain
a fraction r1 + r2 of the model; that is, that we can write

e = r1δg1 + r2δg2 +(1− r1− r2)e′ .

The problem is that the parts of the model for which each global assignment provides an explanation may
overlap, and hence be counted twice in the purported explanation. This problem does not arise in the
possibilistic case since 1∨1 = 1, making double-counting harmless.

In order to overcome this limitation, we need to use probability subdistributions, a relaxation of the
notion of distribution where the weights are allowed to add up to less than one.

3Incidentally, the set Se(U) for a general U ⊆ X was used in Mansfield & Barbosa [17] to discuss contextuality of sub-models,
and to construct canonical extensions of possibilistic models to scenarios with more compatibility, which were then used to transform
Kochen–Specker models into equivalent Bell-type models. It remains to be investigated whether a probabilistic version of the results
of that paper can be achieved using the quantitative generalisations of Se(U), namely S≥r

e (U) and Ce(U), presented in this section.
4The remarks regarding monotonicity and the recovery of the possibilistic notion also hold if one replaces X by any other subset

U ⊆ X . As for S≥r
e (U), it also contains at most one assignment t ∈ E (U), exactly when the submodel restricted to the measurements

in U is deterministic, of the form δt .
5Recall the observation that if there is a possibilistic extension, then Se(X) provides such an extension since it makes no difference

to throw in extra consistent assignments.
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Definition 3.3. Let R be an ordered semiring. An R-subdistribution on a set S is a function c : S −→ R
such that its support, suppc = {s ∈ S | c(s) 6= 0}, is finite and such that ∑s∈S c(s)≤ 1. The value of this sum
is called the weight of c, and denoted ω(c). The R-subdistributions functor S DR : Set−→ Set assigns
to a set S the set S DRS of R-subdistributions on S, and to a function f : S−→ T the function

S DR f : S DRS−→S DRT :: c 7−→ λ t ∈ T . ∑
s∈S, f (s)=t

c(s) .

The set S DRS is a poset with the order defined pointwise from the order in R.

In the case R = B, the only difference compared to DB is that the zero function is now allowed; or in
terms of sets, the empty set is now allowed, thus S DB is the covariant finite powerset functor. Of course,
we are interested primarily in the case R = R≥0 of probability subdistributions.

A more informative version of Se, behaving better in the probabilistic case, can be introduced by em-
ploying the notion of subdistribution.

Definition 3.4. Given an empirical model e on a scenario 〈X ,Om,Σ〉, for any U ⊆ X we write Ce(U) for the
set of subdistributions on the set of assignments of outcomes to the measurements in U that are consistent
with e:

Ce(U) :=
{

c ∈S DR≥0E (U) | ∀C∈M . ∀s∈E (C∩U). eC|C∩U (s)≥ c|C∩U (s)
}

.

Again, we mostly care about the case U = X , in which the above reduces to6

Ce(X) =
{

c ∈S DR≥0E (X) | ∀C∈M . ∀s∈E (C). eC(s)≥ c|C(s)
}

.

Let us add two obvious remarks regarding the relationship between Ce(U) and the sets discussed in
Section 3.1. First, the sets S≥r(U) are embedded in Ce(U) by taking an assignment t ∈ S≥r(U) to the
probability subdistribution rδt . Conversely, given a probability subdistribution c ∈Ce(U), any assignment
t ∈ E (U) in its support belongs to the set S≥c(t)(U).

There is an observation analogous to (or rather, in light of the above remarks, generalising) Proposition
3.2. The gain is that we can now use more than a single global assignment, simultaneously, to explain part
of the model in a non-contextual way. The observation is the contextualised version of the obvious fact that
if d is a distribution on a set Y and c is a subdistribution with c ≤ d, then d can be written as a mixture of
the form ∑y∈Y c(y)δy +(1−ω(c))p′ for some other distribution p′.

Proposition 3.5. Let e be a (probabilistic) empirical model on a measurement scenario 〈X ,Om,Σ〉. Given
a consistent global subprobability distribution c ∈Ce(X), then the model e has a convex decomposition of
the form

e =

(
∑

g∈E (X)

c(g)δg

)
+(1−ω(c))e′

for some other model e′.

Proof. Analogous to that of Proposition 3.2.

3.3 Non-contextual and strongly contextual fractions
The convex decomposition in Proposition 3.5 can be rewritten as(

∑
g∈E (X)

c(g)δg

)
+(1−ω(c))e′ = ω(c)

(
∑

g∈E (X)

c(g)
ω(c)

δg

)
+(1−ω(c))e′ ,

6Note that a similar definition could be written using R-subdistributions for any ordered semiring R and empirical models defined
over R, in particular possibilistic empirical models. But in the possibilistic realm, R = B, Ce(X) simply consists of all the sets of
consistent global assignments, i.e. all the subsets of Se(X). So, it contains the same information as Se(X) and this new definition is
rather pointless. This observation hinges on the fact that there is a maximal set of consistent (global) assignments, which essentially
boils down to the cumulative property discussed at the start of this section. In the probabilistic realm, R = R≥0, however, this is no
longer the case: a maximum consistent probability subdistribution does not exist for a general empirical model.
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making it clear that this is a decomposition of e into a non-contextual model, with weight ω(c), and another
model, e′.

A natural question to ask of a given empirical model e is what fraction of it can be explained non-
contextually, or locally. That is, what is the maximum value of the weight r over all convex decompositions
of the form

e = re1 +(1− r)e2 ,

where e1 is a non-contextual model and e2 is a (no-signalling) empirical model. This maximum is called
the non-contextual fraction of e [3], by analogy with the terminology local fraction introduced earlier
for models on Bell-type scenarios [13] (see also [8, 6] where the term ‘local fraction’ is actually used). In
light of the observation above, this is the same as the maximum weight of a consistent subdistribution:

max{ω(c) | c ∈Ce(X)} .

Note that such a maximum exists, i.e. the supremum of these weights is attained. This is because, if one
thinks of the subdistributions as vectors with |E (X)| components, they form a bounded subset of R|E (X)|,
and moreover Ce(X) is a closed subset, a fact that is obvious from its definition (note the use of ≥, not >).
Hence, by the Heine–Borel theorem, the set Ce(X), being bounded and closed, is compact. Consequently,
the real-valued weight function ω , being continuous, attains its supremum, by the extreme value theorem.

The following proposition amounts to showing that the remainder of such a maximal consistent subdis-
tribution, or maximal non-contextual explanation, is a strongly contextual model.
Proposition 3.6. Let 〈X ,Om,Σ〉 be a measurement scenario. Then any empirical model e admits a convex
decomposition, e = reNC +(1− r)eSC, into a non-contextual and a strongly contextual model.

This result has an immediate consequence concerning extremal points of the no-signalling polytope:
that they must either be non-contextual (in fact, deterministic non-contextual) or strongly contextual. We
have further characterised these in [2].

The decomposition of Proposition 3.6 is not unique: there might be more than one probability subdis-
tribution consistent with e achieving the maximal possible weight. This can happen when there is a face
of the no-signalling polytope of dimension at least 1, i.e. not a vertex but at least an edge, consisting only
of strongly contextual models (equivalently, whose vertices are all strongly contextual) that lies parallel to
a face of the non-contextual polytope. In particular, such non-uniqueness cannot arise when the scenario
is such that there are no two adjacent strongly contextual vertices of the no-signalling polytope, hence no
face of the polytope consisting solely of strongly contextual models. This is the case, for example, for the
(2,2,2) Bell-type scenario.

From Proposition 3.6, one sees that the non-contextual fraction, or maximum weight of a consistent
probability subdistribution, provides a grading between non-contextuality and strong contextuality: it is
equal to 1 iff the empirical model is non-contextual, and it is equal to 0 iff it is strongly contextual. This
suggests that it can serve as a measure of how contextual a given model is. We shall see in Section 5 that
this measure relates to the maximal violation of any Bell inequality.

4 Linear programming for contextuality
The task of finding a consistent probability subdistribution with maximum weight for a given empirical
model can be phrased as a linear optimisation problem. This is based on the phrasing of contextuality in
linear algebraic terms [3].

Fix a measurement scenario 〈X ,M ,O〉. An empirical model e admits an explicit representation as a
vector ve in Rm, where m = ∑C∈M |E (C)|, the components being indexed by the local assignments: pairs
〈C,s〉 with C ∈M a maximal context and s ∈ E (C) an assignment of outcomes to the measurements in
that context. For each such 〈C,s〉, the component ve[〈C,s〉] of this vector is the probability given to s by
the model at context C,

ve[〈C,s〉] := eC(s) .

These vectors can be thought of as streamlined versions of the tables used to represent empirical models:
for example, the Bell–CHSH model from table (1) can be represented by the vector

[1/2, 0, 0, 1/2, 3/8, 1/8, 1/8, 3/8, 3/8, 1/8, 1/8, 3/8, 1/8, 3/8, 3/8, 1/8] .
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Similarly, a probability subdistribution (in particular, also, a probability distribution) on global assign-
ments, c ∈S DR≥0E (X), can be represented as a vector c in Rn with n := |E (C)|. It is clear that the vector
satisfies c≥ 0, meaning that each component is non-negative, since we are taking subdistributions on R≥0.
Moreover, the weight of the subdistribution, ω(c), is given in vector terms by the dot product 1 ·c, where 1
stands for the vector (in Rn) whose coordinates are all equal to 1.

The measurement scenario also determines an incidence matrix that records the relationship between
global assignments and local assignments. This is an m×n matrix M whose components are given by

M[〈C,s〉,g] :=

{
1 if g|C = s
0 otherwise

.

Note that the columns of this matrix, M[−,g], are the vectors representing the deterministic models, δg. On
the other hand, its rows, M[〈C,s〉,−], are the (row) vectors that indicate the global assignments that restrict
to a given local assignment. So, the dot product of a row and (the vector representing) a probability subdis-
tribution c on global assignments yields the weight that this subdistribution gives to the local assignment
corresponding to the row, since

M[〈C,s〉,−] · c = ∑
g∈E (X),g|C=s

c(g) = c|C(s) .

The condition for c to be a global probability distribution extending the model e (as in Definition 2.2) is
that, for all local assignments s ∈ E (C), this value be the probability attributed by e to the assignment s,
namely eC(s). This can be phrased in terms of the vector representation as follows:

Mc = ve .

The empirical model e is non-contextual if and only if this system of linear equations can be solved for
c subject to the constraint c ≥ 0. Similarly, the condition, given in Definition 3.4, for a subdistribution
c ∈ S DR≥0E (X) to be consistent with a model e is that, for all local assignments s ∈ E (C), the value
c|C(g) be at most eC(s). In terms of the vector representation, this corresponds to the inequality

Mc ≤ ve .

We are now in possession of all the ingredients to translate the problem of finding a probability subdis-
tribution of maximum weight consistent with a given empirical model as the following linear programming
problem:

Find c ∈ Rn

maximising 1 · c
subject to Mc ≤ ve

and c ≥ 0 .

(3)

5 Violation of Bell inequalities
We make more precise the idea that the non-contextual fraction yields a measure of contextuality by relating
it to the violation of Bell inequalities.

An inequality for a measurement scenario 〈X ,M ,O〉 is determined by a set of coefficients α =
{α(C,s)}C∈M ,s∈E (C) and a bound R. For a model e, the inequality reads as

Bα(e) ≤ R ,

where the left-hand side is given by

Bα(e) := ∑
C∈M ,s∈E (C)

α(C,s)eC(s) .
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We often refer to such inequality as the tuple 〈α,R〉. We restrict our attention to the case when the bound R
is non-negative as any inequality is equivalent to one with that property. It is called a Bell inequality if it is
satisfied by any non-contextual (or local) model. If, moreover, equality is attained by some non-contextual
(or local) model, the Bell inequality is said to be tight.

Whereas a Bell inequality establishes a limit for the value of Bα(e) amongst non-contextual models,
for a general (no-signalling) model e, this quantity is limited only by

‖α‖ := ∑
C∈M

max{α(C,s) | s ∈ E (C)} ,

since

Bα(e) = ∑
C∈M

∑
s∈E (C)

α(C,s)eC(s) ≤ ∑
C∈M

(
max{α(C,s) | s ∈ E (C)} ∑

s∈E (C)

eC(s)

)
= ‖α‖ ,

where the last equality follows from the fact that each eC is a probability distribution. Note that we are
implicitly restricting our attention to inequalities 〈α,R〉 where R ≤ ‖α‖, since other cases are evidently
uninteresting. In fact, we further assume that R < ‖α‖, in this way excluding inequalities that are trivially
satisfied by all no-signalling models. This will avoid cluttering the presentation with special caveats about
division by 0.

A model e violates the Bell inequality by max{0,Bα(e)−R}. However, it is more appropriate to talk
about the value normalised by the maximal theoretical violation, as this gives a better idea of the extent to
which the model violates the inequality.

Definition 5.1. The normalised violation of a Bell inequality 〈α,R〉 by an empirical model e is the value

max{0,Bα(e)−R}
‖α‖−R

.

Proposition 5.2. Let e be an empirical model with non-contextual fraction k. Then its normalised violation
of any Bell inequality is at most 1− k (its strongly contextual fraction).

In fact, for any empirical model, there exists a specific Bell inequality such that this maximal violation
is attained. This inequality is necessarily tight, for otherwise there would exist another inequality (with the
same coefficients but a smaller bound) that would still be a Bell inequality and that would have a larger
violation by the model e, contradicting the previous result. We now show that it is in fact saturated by the
non-contextual fraction of the model in question.

As is detailed in the proof of the following proposition, this Bell inequality can be found using the dual
linear programming problem to (3).

Proposition 5.3. Let e be an empirical model with non-contextual fraction k. Then there is a Bell inequality
whose normalised violation by e is exactly 1−k. Moreover, this Bell inequality is tight at the non-contextual
model eNC.

Proof. Recall the linear program (3) which calculates a maximum-weight probability subdistribution on
global assignments consistent with the model C. To say that e has non-contextual fraction k is to say that
an optimal solution, c∗, to the linear programming problem attains the value k for its objective function, i.e.
1 · c∗ = k.

Let us consider the symmetric dual problem to (3):

Find b ∈ Rm

minimising ve ·b
subject to Mᵀ b ≥ 1
and b ≥ 0 .

(4)

Given a solution b to the linear constraints of this problem, we define a vector

a := 1− (T −R)b (5)
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where T := |M | is the number of maximal contexts in the scenario and R is a constant satisfying 0≤ R < T
(in fact, perhaps the easiest is to set R = 0). The idea is that the components of the vector are to be taken as
the coefficients of an inequality,

α(C,s) := a[〈C,s〉] ,

and R as its bound. For f an empirical model, the inequality, which reads Bα( f ) ≤ R, can be phrased in
terms of vectors as

v f ·a ≤ R . (6)

It remains to show: that a solution to (4) yields a Bell inequality; that the optimal solution yields a Bell
inequality whose normalised violation by e is exactly 1− k; and that the non-contextual part of the model,
eNC, saturates this inequality. See Appendix A for the remainder of the proof.

6 Computational explorations
Computational tools in the form of a Mathematica package have been developed for:

1. calculating quantum empirical models from any state and any sets of compatible measurements;

2. calculating the incidence matrix for any measurement scenario;

3. quantifying the degree of contextuality of any empirical model using the linear programming method
(3) of Section 4.

4. calculating the Bell inequality of Proposition 5.3, using the dual linear program (4).

We stress that these tools are completely general: they can be applied to any pure or mixed quantum state
in any Hilbert space and to any sets of compatible observables in that space, including Bell scenarios as a
special case.

6.1 Equatorial measurements on the Bell state |φ+〉
As an example of how the package can be used, we consider a family of empirical models that can be
obtained by considering local measurements on the two-qubit Bell state

|φ+〉= |↑↑〉+ |↓↓〉√
2

Recall that projective measurements on a qubit can equivalently be represented by a point on the Bloch
sphere. Suppose that we allow the same two local measurements on each qubit, and that these are equatorial
on the Bloch sphere, parametrised by angles φ1 and φ2 as in Figure 1. One such model is the Bell-CHSH
model from table (1), which is obtained when

(φ1,φ2) = (0,π/3) .

We can use the package to plot the degree of contextuality (non-contextual fraction) of the resulting
models as a function of φ1 and φ2 (Figure 2). It is interesting to note that the Bell-CHSH model does not
achieve the maximum degree of contextuality. The minima of the plot (which correspond to maximum
contextuality) occur when

{φ1,φ2} ∈
{{

π

8
,

5π

8

}
,

{
7π

8
,

3π

8

}}
.

All of the corresponding empirical models take the form of the following table

A B 00 01 10 11
a1 b1 p (1/2− p) (1/2− p) p
a1 b2 (1/2− p) p p (1/2− p)
a2 b1 (1/2− p) p p (1/2− p)
a2 b2 (1/2− p) p p (1/2− p)
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|0〉

|1〉

φ1 φ2

θ = π

2

φ = 0

Figure 1: Equatorial measurements at φ1 and φ2 on the Bloch sphere.

Figure 2: Contextuality of empirical models obtained with equatorial measurements at φ1 and φ2 on each
qubit of |φ+〉.

where

p =

√
2+2
8

.

These can easily be shown to achieve the Tsirelson violation of the CHSH inequality. Note that none of
these models are strongly contextual: this provided one motivation to look for proofs that Bell states cannot
witness logical forms of non-locality [16, 5].

It may seem surprising at first that the empirical models are not constant with respect to the relative
angle (φ2−φ1) between measurements; a fact that is apparent from figure 2. For example, the empirical
model obtained when (φ1,φ2) = (0,π/4) is local, but if these values are shifted by π/8 the resulting model
achieves the maximum violation of the CHSH inequality. Nevertheless, this must be the case since a
rotation by φ around the Z-axis for each of the qubits is described by

(
e−iφ/2 0

0 eiφ/2

)
⊗
(

e−iφ/2 0
0 eiφ/2

)
=


e−iφ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiφ

 (7)

and thus introduces a relative phase of 2φ between the terms in |φ+〉.
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(a) (b)

Figure 3: Contextuality of empirical models obtained with equatorial measurements at φ1 and φ2 on each
qubit of |ψGHZ(n)〉 with: (a) n = 3; (b) n = 4.

6.2 Equatorial measurements on n-partite GHZ states
We can consider similar families of models for the n-partite GHZ states [14], given for each n > 2 by:

|ψGHZ(n)〉=
|↑〉⊗n + |↓〉⊗n

√
2

(8)

Note that for n = 2 the state obtained is the |φ+〉 Bell state. For n > 2, Mermin considered models in which
each each party can perform Pauli X or Y measurements to provide logical proofs of non-locality [18].

Again, we allow the same two local measurements on each qubit and assume that these are equatorial
on the Bloch sphere. For |ψGHZ(3)〉 and |ψGHZ(4)〉 we obtain the plots shown in figure 3. The minima of the
plot for the tripartite state reach 0, indicating strong contextuality, and occur when

{φ1,φ2} ∈
{{

π

2
,0
}
,

{
2π

3
,

π

6

}
,

{
5π

6
,

π

3

}}
. (9)

Of course, (φ1,φ2) = (π/2,0) correspond to the Pauli measurements Y and X , yielding the usual GHZ
model. The empirical models corresponding to other minima are identical up to re-labelling, so these
provide alternative sets of measurements that can be made on the GHZ state and still lead to the familiar
parity argument for non-locality [18]. The situation is similar for n = 4, in which minima of 0 are seen to
occur at

{φ1,φ2} ∈
{{

π

2
,0
}
,

{
5π

8
,

π

8

}
,

{
3π

4
,

π

4

}
,

{
7π

8
,

3π

8

}}
. (10)

We can see a pattern beginning to emerge in (9) and (10), which leads to the following proposition.
Proposition 6.1. Equatorial measurements at

(φ1,φ2) ∈
{(

(n+ k)π

2n
,

k π

2n

)
| 0≤ k < n

}
on each qubit of the n-partite GHZ state give rise to the strongly contextual GHZ(n) model described in [3,
Section 6].

7 Conclusion
An important feature of the measure of contextuality and the associated computational tools described in
this paper is that they are applicable to empirical models on any measurement scenario. The linear pro-
gramming approach to finding the degree of contextuality of a model, for example, works in full generality
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and provides a means of finding a general analogue of a Bell inequality witnessesing contextuality given
any contextual or non-local model. This is especially relevant for experimental verification of contextuality,
where it can be used to ensure robustness of contextuality with respect to inaccuracies in state preparation
and measurements in scenarios where the CHSH or other inequalities are not applicable.

It is also an interesting development in itself, which is worthy of further investigation. For example,
similar methods can be used to define a quantitative grading of the notion of logical contextuality, if one
regards it as being about the extension of a particular local assignment to a global one. Similarly, one can
use Ce(U) to discuss the contextuality of submodels as in [17], and this might provide a way to achieve
probabilistic analogues of the results in that paper.

The tools described here have served as a useful companion to research on the sheaf-theoretic pro-
gramme, as a means to calculate examples and to inform and test conjectures, such as some of the results
of [4, 5]. It is hoped that they can continue to play an important rôle in guiding future results and develop-
ments. For example, these tools can be especially useful in the continuing effort to classify non-locality of
states.
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A Proofs

Proof of Proposition 3.6. Let c be a probability subdistribution in Ce(X) with maximal weight, and use
Proposition 3.5 to get a decomposition of e of the form

e = ω(c)

(
∑

g∈E (X)

c(g)
ω(c)

δg

)
+(1−ω(c))e′ .

We show that e′ is strongly contextual. Suppose for a contradiction that it has a consistent global assignment
h ∈ Se′(X). Then, by equation (2), there is an r ∈ (0,1] such that h ∈ S≥r

e′ (X). But then c′ := c+(1−
ω(c))rδh is a probability subdistribution consistent with e, i.e. c′ ∈Ce(X). This is because for any σ ∈ Σ,

eσ

= { by the convex decomposition above }(
∑

g∈E (X)

c(g)δg|σ

)
+(1−ω(c))e′σ

≥ { since h ∈ S≥r
e′ (X), we have e′ = rδh +(1− r)e′′ by Proposition 3.2 }(

∑
g∈E (X)

c(g)δg|σ

)
+(1−ω(c))rδh

=

c′σ

This contradicts the maximality of the subdistribution c in Ce(X), implying that there can be no such h, i.e.
that Se′(X) is empty.

Proof of Proposition 5.2. This follows from the decomposition of e into a non-contextual and a strongly
contextual models

e = keNC +(1− k)eSC .

http://arxiv.org/abs/1402.4827
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The left-hand side of the Bell inequality adds up to

Bα(e)

= { using the decomposition above and the obvious linearity of B }

kBα(eNC)+(1− k)Bα(eSC)

≤ { since Bα (eNC)≤ R by non-contextuality of eNC , and Bα (eSC)≤ ‖α‖ }

kR+(1− k)‖α‖
=

kR+(1− k)R+(1− k)(‖α‖−R)

=

R+(1− k)(‖α‖−R) .

Continuation of proof of Proposition 5.3. Let us first show that this is a Bell inequality, i.e. that it is sat-
isfied by all non-contextual models. It suffices to show it for the deterministic models, δg with g ∈ E (X).
Recalling that the columns of M (and so the rows of Mᵀ) are exactly the vectors representing these models,
and bearing equation (6) in mind, the fact that 〈α,R〉 is a Bell inequality is concisely expressed by the
system of linear inequalities

Mᵀ a ≤ R1 .

Let us see why this follows from the fact that b is a solution to the linear programming problem (4).

Mᵀ a ≤ R1

⇔ { definition of a, equation (5) }

Mᵀ (1− (T −R)b) ≤ R1

⇔ { linearity }

Mᵀ 1− (T −R)Mᵀ b ≤ R1

⇔ { Mᵀ 1 = T 1 since each row of Mᵀ has exactly a 1 entry per maximal context }

T 1− (T −R)Mᵀ b ≤ R1

⇔ { basic algebra }

(T −R)Mᵀ b ≥ (T −R)1

⇔ { R < T , hence T −R is positive }

Mᵀ b ≥ 1

⇔ { b is a solution to the LP problem (4) }
true

Moreover, the non-negativity of b translates to a bound on the componenents of a:

a ≤ 1

⇔ { definition of a, equation (5) }

1− (T −R)b ≤ 1
⇔

(T −R)b ≥ 0

⇔ { R < T , hence T −R is positive }
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b ≥ 0

⇔ { b is a solution to the LP problem (4) }
true

This has as an immediate consequence a bound on the maximal violation of the inequality α represented
by the vector a, namely

‖α‖ = ∑
C∈M

max{a[〈C,s〉] | s ∈ E (C)} ≤ ∑
C∈M

1 = T .

Now, we know that the primal LP problem, (3), has an optimal solution c∗. The strong duality theorem
for linear programming (see e.g. [12]) then says that the dual LP problem, (4), also admits an optimal
solution b∗, and moreover that these two optimal solutions are related by

ve ·b∗ = 1 · c∗ . (11)

Using this fact, one can calculate the value attained by the Bell inequality 〈α∗,R〉 represented by the vector
a∗ that in turn corresponds to the optimal solution b∗ via equation (5).

Bα∗(e)

= { vector representation }

ve ·a∗

= { definition of a∗, as in (5), and linearity }

ve ·1− (T −R)ve ·b∗

= { ve ·b∗ = 1 · c∗ = k, the non-contextual fraction }

ve ·1− k(T −R)

= { ve ·1 = T for any model, since ve has T probability distributions }

T − k(T −R)

= { arithmetic (adding R−R) }

R+(1− k)(T −R)

≥ { T ≥ ‖α∗‖ as seen above and 1− k ≥ 0 }

R+(1− k)(‖α∗‖−R)

This shows that the normalised violation of the inequality by the model e is at least 1−k. Since the opposite
inequality follows from Proposition 5.2, this concludes the proof that the model e attains a normalised
violation of 1− k of the Bell inequality 〈α∗,R〉.

Now, let us show that the non-contextual part of the model, eNC, saturates this inequality. Recall
that eNC is the model determined by the probability subdistribution represented by the vector c∗ that was an
optimal solution to the primal LP. As such, it is represented as 1/k Mc∗, where the scalar serves to normalise
by k = 1 · c∗. By virtue of being non-contextual, we know that this model satisfies the inequality, i.e. that

(
1
k

Mc∗
)
·a∗ ≤ R .
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We thus need to show the opposite inequality. We have:(
1
k

Mc∗
)
·a∗ ≥ R

⇔
(Mc∗) ·a∗ ≥ k R

⇔ { definition of a∗, as in (5), and linearity }

(Mc∗) ·1− (T −R)(Mc∗) ·b∗ ≥ k R

⇔ { (Mc∗) ·1 = kT , since the vector (Mc∗) has weight k at each context }

(T −R)k− (T −R)(Mc∗) ·b∗ ≥ 0

⇔ { T −R > 0 since R < T }

k− (Mc∗) ·b∗ ≥ 0
⇔

(Mc∗) ·b∗ ≤ k

⇐ { c∗ and b∗ are solutions to (3) and (4), resp., hence Mc∗ ≤ ve and b∗ ≥ 0 }

ve ·b∗ ≤ k

⇔ { by equation (11) }
true

Proof of Proposition 6.1. First, we know that this holds for k = 0, since in that case we simply have Pauli
X and Y measurements, which were the measurements prescribed for obtaining the usual n-partite GHZ
models considered by Mermin [18]. Mermin gave logical non-locality proofs for n-partite generalisations
of the GHZ state for all n > 2, where each party can perform Pauli X or Y measurements. With a little
calculation, it is possible to provide a very concise description of the resulting empirical models.

Recall that the GHZ states are:

|ψGHZ(n)〉 :=
|↑〉⊗n + |↓〉⊗n

√
2

. (12)

where n is the number of qubits. The eigenvectors of the X operator are

|0x〉=
|0〉+ ei0|1〉√

2
and |1x〉=

|0〉+ eiπ |1〉√
2

. (13)

The vector |0x〉 has eigenvalue +1 and the vector |1x〉 has eigenvalue −1. These are more usually de-
noted |+〉 and |−〉, respectively, but we use an alternative notation to match our usual {0,1} labelling for
outcomes. Similarly, the +1 and −1 eigenvectors of the Y operator are

|0y〉=
|0〉+ eiπ/2|1〉√

2
and |1y〉=

|0〉+ e−iπ/2|1〉√
2

. (14)

The phases have been made explicit since they will play the crucial role in the following calculations. The
various probabilities for the empirical model predicted by quantum mechanics can be calculated as∣∣〈|ψGHZ(n)〉|v1 . . .vn〉

∣∣2
where the vi are the appropriate eigenvectors. This evaluates to∣∣∣∣1+ eiφ

√
2n+1

∣∣∣∣2 = 1+ cosφ

2n , (15)
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where φ is the sum of the phases of the vi. From the phases of the possible eigenvectors, (13) and (14), it
is clear that we must have φ = l π/2 for some l ∈ Z4, the four element cyclic group. For l ≡ 0 (mod 4),
the probability will be 1√

2n−1 ; for l ≡ 2 (mod 4) the probability will be 0; and for l ≡ 1 or 3 (mod 4) the

probability will be 1√
2n .

We can now reduce the calculation of probabilities for any such model into a simple counting argument.
If l0x is the number of |0x〉 eigenvectors, l1x is the number of |1x〉 eigenvectors, and so on, then

l ≡ l0y +2 · l1x +3 · l1y (mod 4)

≡
(
l0y + l1y

)
+2 ·

(
l1x + l1y

)
(mod 4) .

Hence, the empirical model is given as follows:

• For contexts containing an odd number of Y s, every outcome is possible with equal probability 1√
2n ,

since l = 1 or 3 (mod 4).

• For contexts containing a number of Y s divisible by four (equal to 0 mod 4), outcomes are possible
if and only if they contain an even number of 1’s. For these outcomes, l ≡ 0 (mod 4) and the
probabilities are 1√

2n−1 . If there were an odd number of 0’s in the outcomes then l ≡ 2 (mod 4) and
the probability would be 0.

• Similarly, for contexts that contain a number of Y s equal to 2 mod 4, outcomes are possible if and
only if they contain an odd number of 1’s. Again, the non-zero probabilities are 1√

2n−1 .

Now consider the case 0 < k < n. We can rotate each qubit by the phase φ = k π/n, so that we continue
to deal with X and Y measurements. It is necessary, however, to take account of the relative phase intro-
duced by this operation on the overall state. By generalising (7) it is clear that the state after rotations will
be

|ψGHZ(n,φ)〉=
|↑〉⊗n + ei2nφ |↓〉⊗n

√
2

.

Notice that for the relevant values of φ the relative phase vanishes and we are left with the state |ψGHZ(n)〉
from (8). Then the probabilities of the various outcomes can simply be calculated using equation (15), as
before, and it is clear that we must obtain the same strongly contextual GHZ models described above.
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