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We derive operational noncontextuality inequalities for the simplest compatibility scenario capable
of exhibiting contextuality: Specker’s scenario. In doing this, we show how to rehabilitate the
so-called “state-dependent” proofs of quantum contextuality to tests of contextuality for arbitrary
operational theories. We explicitly take into account the lack of perfect predictability of measurement
outcomes in realistic experiments. Too much noise would render these inequalities impossible to
violate, unlike the case of Kochen-Specker type inequalities which fail to take noise into account.
We also construct a quantum realization of Specker’s scenario and demonstrate a violation of our
theory-independent inequality. Specker’s scenario involves three two-outcome measurements that
are pairwise jointly measurable but need not be triplewise jointly measurable. It is the minimal
scenario in which contextuality with respect to joint measurement contexts can be expected to
manifest itself and our analysis provides a robust noncontextuality inequality for this scenario. We
also generalize our analysis to arbitrary n-cycle scenarios.

I. MOTIVATION

Traditionally, whenever the word “contextuality” ap-
pears in the quantum foundations literature, it has re-
ferred to context-dependence for a particular kind of con-
text that is specific to projective measurements in quan-
tum theory (in the spirit of the Kochen-Specker theo-
rem): this kind of context refers to Hermitian operators
(say, B and C) that commute with a given Hermitian op-
erator in question (say A) but do not commute with each
other. That is, [A,B] = [A,C] = 0 and [B,C] 6= 0. Since
commutativity is equivalent to joint measurability in the
case of projective measurements, B and C provide two
different contexts for the measurement of A. The quan-
tum statistics of A is seen to be independent of whether
it is marginalized from the joint measurement statistics
of A and B or of A and C. This motivates the Kochen-
Specker assumption of noncontextuality that any ontic
state λ assigns values to A independently of whether it
is measured with B or with C, an assumption we term
KS-noncontextuality. We will refer to the particular kind
of contexts involving joint measurements as compatibility
contexts.

To be able to talk about whether the value assignment
to a measurement depends on the context in which it is
measured, it is necessary that the measurement be im-
plementable in more than one context. Consequently,
one must have at minimum three measurements to study
contextuality. It turns out that three measurements is
also sufficient to derive interesting examples of contextu-
ality. The simplest scenario in which contextuality with
respect to compatiblity contexts has been manifested is
this: three two-outcome measurements such that every
pair of them is jointly measurable but the triple need not
be so. In other words, joint measurability holds pair-
wise but not necessarily triplewise. In fact this was the
first contextualtiy scenario ever to have been studied, by

Specker in 1960 [1]. We shall refer to it as the Specker
scenario.

Significantly, the compatibility relations of Specker’s
scenario (when triplewise joint measurability is forbid-
den) cannot be achieved using projective measurements
(PVMs) in quantum theory. This is because for projec-
tive measurements, joint measurability implies commuta-
tivity of the associated observables. Consequently, if one
has three binary-outcome measurements that are pair-
wise jointly measurable, then every pair of observables is
a commuting pair and it then follows that all three ob-
servables are jointly diagonalizable and therefore that all
three measurements can be implemented jointly. Indeed,
the minimal scenario achievable with PVMs that shows
KS-contextuality is the 5-cycle scenario of Klyachko et
al.[2].

On the other hand, the compatibility relations of
Specker’s scenario can be achieved using generalized
quantum measurements, that is, positive operator-valued
measures (POVMs) which are not projective. This is be-
cause for a pair of POVMs, although commutativity of all
of the elements of one with all of the elements of the other
implies that they can be measured jointly, the converse
is not true—a pair of POVMs can be jointly measurable
even if this commutativity property fails [3]. It follows
that there is scope for proofs of the failure of noncontex-
tuality in quantum theory within the Specker scenario as
long as one considers POVM measurements. 1

Such an investigation, however, requires a notion of
noncontextuality for POVM measurements. The notion
of measurement noncontextuality, proposed in Ref. [5]
provides such a notion, and in subsequent work [6] it
was shown that, unlike the case of projective measure-
ments, one must allow that the outcome assigned to a

1 See Ref. [4] for a discussion of these issues.
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POVM measurement is not fixed deterministically by the
ontic state. Ref. [3] posed the question of whether one
could identify a quantum experiment—using some triple
of binary-outcome POVM measurements having the com-
patibility relations of Specker’s scenario—for which one
could prove that there was no possibility of a noncon-
textual model in the sense of Ref. [5]. The question was
answered in the affirmative in Ref. [7].

We are here interested in leveraging this new proof of
the impossibility of a noncontextual model of quantum
theory to derive noncontextuality inequalities.

Noncontextuality inequalities are inequalities evalu-
ated on experimental statistics which have the feature
that if the experimental statistics can be explained by
a noncontextual ontological model, then the inequalities
are satisfied. As such, they stand to the principle of non-
contextuality as Bell inequalities stand to Bell’s notion of
local causality. And like Bell inequalities, noncontextual-
ity inequalities can be derived and tested independently
of the truth of quantum theory. In particular, a viola-
tion of a noncontextuality inequality by some experiment
attests to the impossibility of a noncontextual model of
that experiment and hence of any physical theory that
can account for the results of that experiment, including
physical theories that might be successors to quantum
theory.

Techniques have recently been developed for deriving
noncontextuality inequalities from so-called “state inde-
pendent” proofs of the impossibility of a noncontextual
model of quantum theory [8]. This contribution (see ac-
companying paper [9]) shows how to extend such tech-
niques to the case of so-called “state dependent” proofs.
We focus on the proof based on the compatibility rela-
tions in Specker’s scenario because this is the simplest
scenario. Also, this scenario is not realizable with pro-
jective measurements, unlike the case of higher n-cycle
scenarios (n > 3).

II. DEFINITIONS

A. Operational theory and its ontological model

An operational theory is specified by (P,M, p), where
P is the set of preparation procedures, M is the set of
measurement procedures, and p(k|M,P ) ∈ [0, 1] denotes
the probability that outcome k ∈ K occurs on implement-
ing measurement procedure M ∈ M following a prepa-
ration procedure P ∈ P on a system.

An ontological model (Λ, µ, ξ) of an operational the-
ory (P,M, p) posits an ontic state space Λ such that
a preparation procedure P is represented by a normal-
ized distribution over Λ, µ(λ|P ) ∈ [0, 1] (λ ∈ Λ) such
that

∑
λ∈Λ µ(λ|P ) = 1 for all P ∈ P, and the proba-

bility of occurrence of a measurement outcome [k|M ] for
a given λ ∈ Λ is specified by ξ(k|M,λ) ∈ [0, 1], where
the measurement outcomes are assumed to be discrete.
The following condition of empirical adequacy prescribes

how the operational theory and its ontological model fit
together:

p(k|M,P ) =
∑
λ∈Λ

ξ(k|M,λ)µ(λ|P ). (1)

B. Operational equivalence

Two preparation procedures, P and P ′, are said to be
operationally equivalent (denoted P ' P ′) if no succeed-
ing measurement procedure M ∈ M (with outcome set
K) yields different statistics for them, that is, if

∀M ∈M,∀k ∈ K : p(k|M,P ) = p(k|M,P ′). (2)

Two measurement events, [k|M ] and [k|M ′] (where M
and M ′ are measurement procedures with outcome set
K each, k ∈ K), are said to be operationally equivalent
(denoted [k|M ] ' [k|M ′]) if no preceding preparation
procedure yields different statistics for them, that is, if

∀P ∈ P : p(k|M,P ) = p(k|M ′, P ). (3)

C. Noncontextuality

Preparation noncontextuality is the following assump-
tion on the ontological model of an operational theory:

P ' P ′ ⇒ µ(λ|P ) = µ(λ|P ′) ∀λ ∈ Λ. (4)

Measurement noncontextuality is the assumption that

[k|M ] ' [k|M ′]⇒ ξ(k|M,λ) = ξ(k|M ′, λ) ∀λ ∈ Λ.
(5)

III. RESULTS

A. Noncontextuality inequalities for Specker’s
scenario

We consider three two-outcome measurements,
{M1,M2,M3}, each Mi with outcomes labelled by
Xi ∈ {0, 1}, such that every pair, that is, {Mi,Mj} for
(ij) ∈ {(12), (23), (31)}, admits of a joint measurement,
denoted by Mij . Mij is a measurement procedure—with
four outcomes denoted by (Xi, Xj)—whose measure-
ment statistics can be coarse-grained to obtain the
measurement statistics of both Mi and Mj for any
preparation P ∈ P:

p(Xi|Mi, P ) ≡
∑
Xj

p(Xi, Xj |Mij , P ),

p(Xj |Mj , P ) ≡
∑
Xi

p(Xi, Xj |Mij , P ). (6)
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Denoting by M
(j)
i (M

(i)
j ) the coarse-graining over Xj

(Xi) of Mij , pairwise joint measurability of M1, M2 and
M3 implies these operational equivalences:

M
(2)
1 'M (3)

1 'M1,

M
(1)
2 'M (3)

2 'M2,

M
(1)
3 'M (2)

3 'M3. (7)

We now define a measurement M∗ as follows: sample
(ij) ∈ {(12), (23), (31)} with probability 1/3 each and
then implement Mij and record (Xi, Xj). We are inter-
ested in the probability of recording anticorrelated out-
comes,

p(anti|M∗, P ) ≡ 1

3

∑
(ij)

p(Xi 6= Xj |Mij , P ). (8)

Similarly, we consider another set of measurements,
{M ′12,M

′
23,M

′
31}, which also achieve a joint measurement

of the respective pairs:

M
′(2)
1 'M ′(3)

1 'M1,

M
′(1)
2 'M ′(3)

2 'M2,

M
′(1)
3 'M ′(2)

3 'M3. (9)

We also define a measurement procedure M ′∗ implement-
ing M ′12, M ′23, or M ′31 with equal probabilities such that
p(anti|M ′∗, P ) is the probability of obtaining anticorre-
lated outcomes for M ′∗.

We define predictability of (M,P ) as:

η(M,P ) ≡ 2 max
X∈{0,1}

p(X|M,P )− 1, (10)

where η(M,P ) is a measure of how predictable, or far
away from uniformly random, the distribution over out-
comes is for a two-outcome measurement M performed
following a preparation P on a system.

Let P∗, P
⊥
∗ , P1, P⊥1 , P2, P⊥2 , P3, P⊥3 be preparation

procedures, and let P
(ave)
x be the preparation procedure

obtained by implementing Px with probability 1/2 and
P⊥x with probability 1/2 for x ∈ {1, 2, 3, ∗}. We suppose
that the following operational equivalences among the
preparations hold:

P
(ave)
∗ ' P (ave)

1 ' P (ave)
2 ' P (ave)

3 , (11)

We can now state our noncontextuality inequalities for
Specker’s scenario:

Theorem 1. An operational theory which satisfies the
operational equivalences of Eqs. (7,9,11) and admits a
noncontextual ontological model must necessarily satisfy
the following noncontextuality inequality in Specker’s sce-
nario:

p(anti|M∗, P∗) + p(anti|M ′∗, P⊥∗ )

≤ 2

(
1− 1

3
ηave

)
, (12)

where

ηave ≡
1

6

3∑
i=1

(
η(Mi, Pi) + η(Mi, P

⊥
i )
)
. (13)

On the other hand, using only the operational equiva-
lences of Eqs. (7,11), such an operational theory must
also satisfy:

p(anti|M∗, P∗)+p(anti|M∗, P⊥∗ ) ≤ 2

(
1− 1

3
ηave

)
, (14)

and

p(anti|M∗, P∗)

≤ 2

3
(2− ηave) . (15)

A KS-noncontextual analysis of Specker’s scenario
would require that the probability of anticorrelation is
bounded above by 2/3 for both M∗ and M ′∗, so that
p(anti|M∗, P ) + p(anti|M ′∗, P⊥) ≤ 4/3. Similarly, in such
an analysis, p(anti|M∗, P∗) + p(anti|M∗, P⊥∗ ) ≤ 4/3. But
from Theorem 1 it is clear that these inequalities are not
warranted by the assumption of noncontextuality alone.
The noncontextual bound of 4/3 will hold if and only
if one has verified that η(Mi, Pi) = η(Mi, P

⊥
i ) = 1 for

all Mi, Pi, P
⊥
i , i ∈ {1, 2, 3}. That is, when each mea-

surement Mi produces deterministic outcomes on both
preparations Pi and P⊥i . In this case, ηave = 1. At the
other extreme, if each Mi has no dependence on the cor-
responding preparation procedures Pi and P⊥i , so that
η(Mi, Pi) = η(Mi, P

⊥
i ) = 0, and therefore ηave = 0, then

a noncontextual model can achieve perfect anticorrela-
tion. A mere observation of perfect anticorrelation on its
own, therefore, is not enough to demonstrate contextual-
ity: one also needs to check that the average predictabil-
ity is sufficiently large: ηave > 0 for Eqs. (12,14) and
ηave >

1
2 for Eq. (15).

Our noncontextuality inequalities in Eqs. (12,14,15)
imply a quantitative tradeoff between operational quan-
tities: the anticorrelation achievable in an operational
theory admitting a noncontextual ontological model and
the predictabilities of the measurements involved.

In our contribution [9], we show that in operational
quantum theory Specker’s compatibility scenario can be
realized by providing an explicit construction and then
use this construction to demonstrate violation of the non-
contextuality inequality of Eq. (12). The largest viola-
tion of the inequality for our choice of preparations and
measurements occurs when ηave ≈ 0.4566 so that the vi-
olation is 0.1793: in this case the noncontextual bound
on the anticorrelation is 1.6956 and the quantum value
is 1.8749.

It follows that if operational quantum theory correctly
describes our experiments and one can devise an experi-
ment that is sufficiently precise that it can approach the
violation predicted by quantum theory, then this exper-
iment should yield a violation of the noncontextuality
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inequality. Moreover, if such an experiment is performed
and the violation is observed, then this observation rules
out the existence of a noncontextual ontological model
regardless of the truth of operational quantum theory.
Hence the result is theory-independent.

B. Generalization to arbitrary n-cycle scenarios

In our contribution [9], we go beyond Specker’s sce-
nario and derive noncontextuality inequalities for all n-

cycle scenarios in a similar fashion. We also exhibit quan-
tum violations of these inequalities. Our derivation of
these inequalities is the first of its kind, as are the ob-
tained quantum violations which are all given by POVMs
on a qubit for any n ≥ 3.
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