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Theories featuring the interaction between a Frobenius algebra and a Hopf algebra have recently
appeared in several areas in computer science: concurrent programming, control theory, and quantum
computing, among others. Bonchi, Sobocinski, and Zanasi [10] have shown that, given a suitable
distributive law, a pair of Hopf algebras forms two Frobenius algebras. Here we take the opposite
approach, and show that interacting Frobenius algebras form Hopf algebras. We generalise [10] by
including non-trivial dynamics of the underlying object—the so-called phase group—and investigate
the effects of finite dimensionality of the underlying model. We recover the system of Bonchi et al as
a subtheory in the prime power dimensional case, but the more general theory does not arise from a
distributive law.

This is a short contribution based on the pre-print arxiv:1601.04964, which has been submitted elsewhere.

1 Summary

Frobenius algebras and bialgebras are structures which combine a monoid and a comonoid on a single
underlying object. They have a long history1 in group theory, but have applications in many other
areas: natural language processing [36, 37], topological quantum field theory [30], game semantics [32],
automata theory [41], and distributed computing [8], to name but a few.

In quantum computation, the bialgebraic interplay between two Frobenius algebras describes the
behaviour of complementary observables [13, 15], a central concept in quantum theory. This interaction is
the basis of the ZX-calculus, a formal language for quantum computation. Using these ideas, a significant
fraction of finite dimensional quantum theory can be developed without reference to Hilbert spaces
[3, 4, 5, 6, 16, 17, 18, 19, 40, 20, 21, 22, 23, 26, 27, 28, 29, 33, 34, 35, 39]. Surprisingly, almost exactly
the same axioms have also appeared in totally different settings: Petri nets [12, 38] and control theory
[7, 11]. This combination of structures seems to have broad relevance in computer science.

The approach of the current paper is directly inspired by the recent work of Bonchi, Sobociński, and
Zanasi [10], who investigated the theory of interacting Hopf algebras2 and showed that Hopf algebras
which obey a certain distributive law form Frobenius algebras [9, 10]. Using Lack’s technique of
composing PROPs [31], they show the resulting theory IHR is isomorphic to that of linear relations3.

Do interacting quantum observables [15] admit such a beautiful description? In this paper we present
a rational reconstruction of theory of strongly complementary observables and show that, except under
quite restrictive circumstances, the theory does not arise by composing PROPs via a distributive law.
Along the way we also clarify the structure of the theory of complementary observables and show that
some assumptions used in earlier work are unnecessary.

1See Fauser [25] for much detail on Frobenius algebras, including their history; for the history of Hopf algebras see [2].
2A Hopf algebra is a bialgebra with some extra structure; see later ??.
3Baez and Erbele [7] prove the same result with different techniques.

http://arxiv.org/abs/1601.04964
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The starting point is the insight that an observable of some quantum system corresponds to a Frobenius
algebra on its state space [14]. Further, the state spaces have non-trivial endomorphims giving their internal
dynamics; among these there is a phase group for each observable, which leaves the observable unchanged.
Since observables are fundamental to quantum theory, we take Frobenius algebras and their phase groups
as the starting point, and freely construct FG, the PROP of a Frobenius algebra with a given group of
phases G.

We then consider a pair of such Frobenius algebras and formalise interactions between them by
imposing stronger and stronger axioms upon them. We produce a series of PROPs

F_+F_ -- IF -- IFK -- IFKd

each more closely resembling quantum theory than its predecessor. The first is simply the disjoint union
of two non-interacting observables. The second requires that the observables be strongly complementary;
this means their corresponding Frobenius algebras jointly form a Hopf algebra [13, 15]. The additional
structure allows us to construct a ring of endomorphisms of the generator, distinct from the phase groups,
and a large class of multiparty unitary operations, being the abstract counterpart of quantum circuits.
Among these morphisms, the internal integers play an important role:

0 := n+1 = n

The next two PROPs introduce eigenstates for the observables, and the effect of finite dimensionality of
the state space respectively. In the last of these, IFKd, if the dimension is a prime power then we recover
the system IHR of Bonchi et al [10] as a subcategory. However we note that if the ring of internal integers
has zero divisors, for example in 4-D quantum systems, then their axioms do not hold.

Each of these theories is actually a functor from a suitable category of groups, so we can freely
construct a quantum-like theory with any given dynamics. It is these phase groups that ultimately obstruct
the derivation of a distributive law of PROPS.

Theorem. There is no distributive law of PROPs

τ : FG;FH → FH;FG

which gives rise to IF(G,H).

Our motivation for studying these generalisations is to better understand categorical quantum theory
[1], particularly with a view to the ZX-calculus. We explicate the necessary features of higher dimensional
versions of the calculus, and separate the algebraic foundation from model-specific details. This will help
clarify questions of completeness [3, 6, 24, 33] and also aid in the formalisation of error correcting codes
[22]. However given the interest in these structures in other areas, we expect that a richer theory will lead
to unexpected applications elsewhere. As a side-effect we learn that the theory of Petri-nets differs from
quantum mechanics.

Comparison to ZX-calculus. The main inspiration for this approach is the ZX-calculus. Writing S1 for
the circle group, the PROP IFKd(S1,Z2,S1,Z2), contains all the elements and most of the equations of
the ZX-calculus, but there are some key differences. Firstly, S1 is the entire phase group i.e. no new phases
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are generated by the action of Z2. Secondly, the ZX-calculus incorporates the Hadamard gate, which is a
definable map which exchanges the colours. In consequence, the sets of - and -unbiased points are
not disjoint in the ZX-calculus. We will explore necessary and sufficient conditions for such a map to exist
abstractly in future work; a connection with Gogioso and Zeng’s [27] seems likely.

Comparison to “Interacting Hopf algebras”. The similarities between our system and that of Bonchi,
Sobocinksi, and Zanasi [10] are striking. They consider the theory of interacting Hopf algebras.

Taking the Frobenius structure as primitive yields almost the same theory as starting with the Hopf
structure, and requires fewer axioms to be imposed. The main extra ingredient in IF are the phase groups,
which play rather badly with the Hopf algebra structure as the following Lemma shows:
Lemma. Let α be a phase of either colour in IF(G,H); then α is bialgebra morphism iff α = id.

Since the phases are not present in the systems considered by Bonchi et al, we temporarily restrict
attention to IF(1,1), i.e. where both phase groups are trivial. Unlike in IF, all the PROPs of [10] have
trivial scalars; this forces the generating object to be 1-dimensional.

The theory IF contains both HA and HAop studied by Bonchi et al; however it does not validate any
of the axioms concerning the invertibility of the ring elements, nor their commutation with the “wrong”
bialgebra maps4. Here Bonchi et al rely on the assumption that R is a PID. However this assumption fails
in, e.g., CZ4 which is a perfectly good model of IF. However, in prime dimensional models these axioms
are validated, hence:
Theorem. Every IFKd algebra of prime dimension includes a copy of IHw

R and this coincides with the
image of IF(1,1), modulo scalar factors.

Further work Many interesting algebraic properties of IF and its relatives remain unexplored: most
notable is generation of new phases via the semi-direct product in the phase group, and the possibility to
define Hadamard transforms purely abstractly. A tempting next phase of development would to investigate
topological features, by considering the case of Lie groups. Finally we note that in the models of the
ZX-calculus (although not derivable) we have the Euler decomposition for SU(2) giving every unitary as
a composition of at most three unitaries. An abstract understanding of this would be most valuable.
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[10] F. Bonchi, P. Sobociński & F. Zanasi (2014): Interacting Hopf Algebras. Technical Report, arXiv:1403.7048.
Available at http://arxiv.org/abs/1403.7048.
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