A Royal Road to Quantum Theory
(or thereabouts)

Alex Wilce
Susquehanna University

QPL XIII, Glasgow,
June 2016

Supported by a grant from the FQXi foundation
Recent reconstructions of (finite-dimensional) QM from simple principles all assume

- Local tomography (LT), ruling out real and quaternionic QM,
- Systems are determined by their “information capacity” (so, only one type of bit).

Recent reconstructions of (finite-dimensional) QM from simple principles \(^1\) all assume

- Local tomography (LT), ruling out real and quaternionic QM,
- Systems are determined by their "information capacity" (so, only one type of bit).

This talk *fails* to derive f.d. QM from *simpler* principles — but gets close, with much less effort:

- No use of LT;
- Allows real, complex and quaternionic QM, plus bits of any dimension — but little else;
- Added payoff: *much easier!*

OUTLINE:

I Background on Jordan algebras
II General probabilistic models
III Conjugates and self-duality
IV Filters and homogeneity
Let E be a f.d. ordered real vector space with positive cone E_+ and with an inner product $\langle \cdot, \cdot \rangle$. E is

- **self-dual** iff $\langle a, b \rangle \geq 0 \forall b \in E_+$ iff $a \in E_+$.
- **homogeneous** iff group of order-atomorphisms of E transitive on interior of E_+.

Background: all you need to know about Jordan algebras

Koecher-Vingerg Theorem [1957/1961]: E is HSD \iff E a formally real Jordan algebra with $E_+ = \{a^2 | a \in E\}$.

Jordan-von Neumann-Wigner Classification [1932]: Formally real Jordan algebras = direct sums of self-adjoint parts of $M_n(F)$, $F = \mathbb{R}, \mathbb{C}, \mathbb{H}, M_3(\mathbb{O})$, or "spin factors" V_n ("bit" with state space an n-ball.)
Let E be a f.d. ordered real vector space with positive cone E_+ and with an inner product $\langle \cdot, \cdot \rangle$. E is

- **self-dual** iff $\langle a, b \rangle \geq 0 \ \forall b \in E_+$ iff $a \in E_+$.
- **homogeneous** iff group of order-atomorphisms of E transitive on interior of E_+.

Koecher-Vingerg Theorem [1957/1961]: E is HSD $\iff E$ a formally real Jordan algebra with $E_+ = \{ a^2 | a \in E \}$
Let E be a f.d. ordered real vector space with positive cone E_+ and with an inner product $\langle \cdot, \cdot \rangle$. E is

- **self-dual** iff $\langle a, b \rangle \geq 0 \ \forall b \in E_+$ iff $a \in E_+$.
- **homogeneous** iff group of order-atomorphisms of E transitive on interior of E_+.

Koecher-Vingerg Theorem [1957/1961]: E is HSD \iff E a formally real Jordan algebra with $E_+ = \{a^2 | a \in E\}$

Jordan-von Neumann-Wigner Classification [1932]: Formally real Jordan algebras = direct sums of self-adjoint parts of $M_n(F)$, $F = \mathbb{R}, \mathbb{C}, \mathbb{H}, M_3(\mathbb{O})$, or “spin factors” V_n (“bit” with state space an n-ball.)
Let E be a f.d. ordered real vector space with positive cone E_+ and with an inner product $\langle \cdot, \cdot \rangle$. E is

- **self-dual** iff $\langle a, b \rangle \geq 0 \ \forall b \in E_+ \iff a \in E_+$.
- **homogeneous** iff group of order-atomorphisms of E transitive on interior of E_+.

Koecher-Vingerg Theorem [1957/1961]: E is HSD \iff E a formally real Jordan algebra with $E_+ = \{ a^2 | a \in E \}$

Jordan-von Neumann-Wigner Classification [1932]: Formally real Jordan algebras = direct sums of self-adjoint parts of $M_n(F)$, $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$, $M_3(O)$, or “spin factors” V_n (“bit” with state space an n-ball.)
Self-duality in QM

\(\mathcal{H} \) a complex Hilbert space, \(\dim(\mathcal{H}) = n \). Let \(E = \mathcal{L}_h(\mathcal{H}) \) with \(E_+ = \text{cone of positive operators} \). This is SD w.r.t.

\[
\langle a, b \rangle := \frac{1}{n} \text{Tr}(ab).
\]
Self-duality in QM

\mathcal{H} a complex Hilbert space, $\dim(\mathcal{H}) = n$. Let $\mathbf{E} = \mathcal{L}_h(\mathcal{H})$ with $\mathbf{E}_+ = \text{cone of positive operators}$. This is SD w.r.t.

$$\langle a, b \rangle := \frac{1}{n} \text{Tr}(ab).$$

Note that $\langle \quad \rangle = \frac{1}{n} \text{Tr}$ is a bipartite state: if

$$\psi = \frac{1}{\sqrt{n}} \sum_{x \in E} x \otimes \overline{x} \in \mathcal{H} \otimes \overline{\mathcal{H}},$$

E any ONB for \mathcal{H}, then $\langle (a \otimes b), \psi, \psi \rangle = \frac{1}{n} \text{Tr}(ab)$.

Self-duality in QM

\(\mathcal{H} \) a complex Hilbert space, \(\dim(\mathcal{H}) = n \). Let \(E = \mathcal{L}_h(\mathcal{H}) \) with \(E_+ = \) cone of positive operators. This is SD w.r.t.

\[\langle a, b \rangle := \frac{1}{n} \text{Tr}(ab). \]

Note that \(\langle \cdot \rangle = \frac{1}{n} \text{Tr} \) is a bipartite state: if

\[\Psi = \frac{1}{\sqrt{n}} \sum_{x \in E} x \otimes \bar{x} \in \mathcal{H} \otimes \overline{\mathcal{H}}, \]

\(E \) any ONB for \(\mathcal{H} \), then \(\langle (a \otimes \bar{b}), \Psi, \Psi \rangle = \frac{1}{n} \text{Tr}(ab) \).

So \(\Psi \) perfectly, and uniformly correlates every ONB of \(\mathcal{H} \) with its counterpart in \(\overline{\mathcal{H}} \):

\[|\langle \Psi, x \otimes \bar{y} \rangle|^2 = \frac{1}{n} \text{ if } x = y, 0 \text{ if } x \perp y. \]

\(\Psi \) is uniquely defined by this feature.
Probabilistic models

A **test space**: a collection $\mathcal{M} = \{E, F, \ldots\}$ of (outcome-sets of) possible measurements, experiments, *tests*, etc.

Let $X := \bigcup \mathcal{M}$. A **probability weight** on \mathcal{M}:

$$\alpha : X \to [0, 1] \text{ with } \sum_{x \in E} \alpha(x) = 1 \ \forall E \in \mathcal{M}.$$

A **probabilistic model**: a pair $A = (\mathcal{M}, \Omega)$,
• \mathcal{M} a test space,
• Ω a convex set of probability weights on \mathcal{M}, the *states* of A.

Notation: $\mathcal{M}(A)$, $X(A)$ and $\Omega(A)$...
Probabilistic models

A **test space**: a collection $\mathcal{M} = \{E, F, \ldots\}$ of (outcome-sets of) possible measurements, experiments, *tests*, etc.

Let $X := \bigcup \mathcal{M}$. A **probability weight** on \mathcal{M}:

$$\alpha : X \to [0, 1] \text{ with } \sum_{x \in E} \alpha(x) = 1 \forall E \in \mathcal{M}.$$

A **probabilistic model**: a pair $A = (\mathcal{M}, \Omega)$,

- \mathcal{M} a test space,
- Ω a convex set of probability weights on \mathcal{M}, the *states* of A.

Notation: $\mathcal{M}(A)$, $X(A)$ and $\Omega(A)$...

Standing assumption: $\Omega(A)$ finite-dimensional.
Two important examples

Simple classical model: \(A = (\{ E \}, \Delta(E)) \) — one test, all probability weights.

Simple quantum model: For a (f.d.) Hilbert space \(\mathcal{H} \), let

- \(\mathcal{M}(\mathcal{H}) = \) set of ONBs for \(\mathcal{H} \);
- \(\Omega(\mathcal{H}) = \) all probability weights states of the form

\[\alpha(x) = \langle Wx, x \rangle, \]

\(W \) a density operator on \(\mathcal{H} \). (= all prob. weights, if \(\dim \mathcal{H} > 2 \).)
Two-bit examples

The square bit B and diamond bit B' have the same test space:

$$\mathcal{M}(B) = \mathcal{M}(B') = \{\{x, x'\}, \{y, y'\}\}$$

but different state spaces:

$$\Omega(A) = \text{all prob weights on } \mathcal{M}(A)$$

$$\Omega(A')$$
Two bit-examples

The **square bit** B and **diamond bit** B' have the same test space:

$$\mathcal{M}(B) = \mathcal{M}(B') = \{\{x, x\}', \{y, y\}'\}$$

but different state spaces:

$$\Omega(A) = \text{all prob weights on } \mathcal{M}(A)$$

$$\Omega(A')$$
Some properties of probabilistic models

A probabilistic model A is

- **uniform** iff all tests $E \in \mathcal{M}(A)$ have a common size, say $|E| = n$ (the *rank* of A)
- **sharp** iff $\forall x \in X(A) \exists! \delta_x \in \Omega(A)$ with $\delta_x(x) = 1$;
- **spectral** iff sharp and, $\forall \alpha \in \Omega(A)$, $\exists E \in \mathcal{M}(A)$ with

\[
\alpha = \sum_{x \in E} \alpha(x) \delta_x.
\]
Some properties of probabilistic models

A probabilistic model A is

- **uniform** iff all tests $E \in \mathcal{M}(A)$ have a common size, say $|E| = n$ (the *rank* of A)
- **sharp** iff $\forall x \in X(A) \exists! \delta_x \in \Omega(A)$ with $\delta_x(x) = 1$;
- **spectral** iff sharp and, $\forall \alpha \in \Omega(A)$, $\exists E \in \mathcal{M}(A)$ with

$$\alpha = \sum_{x \in E} \alpha(x) \delta_x.$$

Square bit \rightarrow uniform, but not sharp.
Diamond bit \rightarrow uniform and sharp, but not spectral.
Classical and quantum models \rightarrow uniform, sharp, spectral.
The spaces $\mathbf{V}(A)$ and $\mathbf{E}(A)$

$\mathbf{V}(A) = \text{span of } \Omega(A) \text{ in } \mathbb{R}^{X(A)}, \text{ with positive cone}$

$$\mathbf{V}(A)_+ := \{ t\alpha \mid \alpha \in \Omega, \ t \geq 0 \}$$
The spaces $\mathbf{V}(A)$ and $\mathbf{E}(A)$

$\mathbf{V}(A) = \text{span of } \Omega(A) \text{ in } \mathbb{R}^{X(A)}$, with positive cone

$$\mathbf{V}(A)_+ := \{ t\alpha \mid \alpha \in \Omega, \ t \geq 0 \}$$

Effects are elements $a \in \mathbf{V}(A)^*$ with $0 \leq a(\alpha) \leq 1 \ \forall \alpha \in \Omega(A)$.

Example: $\hat{x}(\alpha) = \alpha(x)$ for $x \in X(A)$. Note: $\forall E \in \mathcal{M}(A)$,

$$\sum_{x \in E} \hat{x} =: u_A, \ u_A(\alpha) = 1 \ \forall \alpha \in \Omega(A).$$
The spaces $V(A)$ and $E(A)$

$V(A) = \text{span of } \Omega(A) \text{ in } \mathbb{R}^{X(A)}$, with positive cone

$$V(A)_+ := \{ t\alpha \mid \alpha \in \Omega, \ t \geq 0 \}$$

Effects are elements $a \in V(A)^*$ with $0 \leq a(\alpha) \leq 1 \ \forall \alpha \in \Omega(A)$.

Example: $\hat{x}(\alpha) = \alpha(x)$ for $x \in X(A)$. Note: $\forall E \in \mathcal{M}(A)$, $\sum_{x \in E} \hat{x} =: u_A$, $u_A(\alpha) = 1$forall $\alpha \in \Omega(A)$.

It’s also useful to define $E(A) = V(A)^*$, but ordered by

$$E(A)_+ := \left\{ \sum_{i=1}^{k} t_i \hat{x}_i \mid x_i \in X(A), \ t_i \geq 0 \right\}$$
Joint States

A (non-signaling) **joint state** on A and B is a mapping

$$\omega : X(A) \times X(B) \to [0, 1]$$

with

(a) $(E, F) \in \mathcal{M}(A) \times \mathcal{M}(B) \implies \sum_{(x,y) \in E \times F} \omega(x, y) = 1$;

(b) $x \in X(A), y \in X(B) \implies \omega(x \cdot) \in \mathcal{V}_+(B)$ and $\omega(\cdot y) \in \mathcal{V}_+(A)$

Condition (b) ensures that $\omega \in \Omega(AB)$ has well-defined **marginal and conditional states**:

$$\omega_1(x) := \sum_{y \in F} \omega(\cdot, y) \in \Omega(A) \quad \text{and} \quad \omega_{2|x}(y) := \frac{\omega(x, y)}{\omega_1(x)} \in \Omega(B);$$

similarly for $\omega_2(y), \omega_{1|y}$.
Joint States

Marginal and conditional states are related by a **Law of total probability**: \(\forall E \in \mathcal{M}(A), F \in \mathcal{M}(B), \)

\[
\omega_2 = \sum_{x \in E} \omega_1(x)\omega_2|_x \quad \text{and} \quad \omega_1 = \sum_{y \in F} \omega_2(y)\omega_1|_y
\]

Lemma 0: *Every joint state extends to a unique positive linear mapping*

\[\hat{\omega} : E(A) \rightarrow V(B), \]

such that \(\hat{\omega}(x)(y) = \omega(x, y) \forall x \in X(A), y \in X(B). \)
Conjugates

Let A be uniform, with rank n. A **conjugate** for A: a triple $(\overline{A}, \gamma_A, \eta_A)$, $\gamma_A : A \simeq \overline{A}$ an isomorphism and η_A is a joint state on A and \overline{A} such that

(a) $\eta(x, \gamma_A(y)) = \eta(y, \gamma_A(x))$ and

(b) $\eta_A(x, \gamma_A(x)) = \frac{1}{n} \ \forall x \in X(A)$.

Notation: $\gamma_A(x) =: \overline{x}$.

Note that $(\eta_A)_{1|\overline{x}}(x) = 1$. Thus, A sharp $\Rightarrow \eta_A$ uniquely defined (by $\eta_A(x, \overline{y}) = \frac{1}{n} \delta_y(x)$) $\Rightarrow \eta_A$ is symmetric.
Lemma 1: Let A be sharp, spectral, and have a conjugate. Then

\[\langle a, b \rangle := \eta_A(a, b) \]

is a self-dualizing inner product on $E(A)$.

Proof: Exercise!
Lemma 1: Let A be sharp, spectral, and have a conjugate. Then

$$\langle a, b \rangle := \eta_A(a, \bar{b})$$

is a self-dualizing inner product on $E(A)$.

Proof: Exercise!

Hints: $\langle \ , \ \rangle$ bilinear and symmetric by Lemma 0 and sharpness. By spectrality, $\hat{\eta}$ takes $E(A)_+$ onto $V(A)_+$, so, is an order-isomorphism. Spectrality now also implies every $a \in E(A)$ has a decomposition $a = \sum_{x \in E} t_x x$ for some $E \in \mathcal{M}(A)$ and coefficients $t_x \in \mathbb{R}$. Hence,

$$\langle a, a \rangle = \sum_{x, y \in E \times E} t_x t_y \eta_A(x, \bar{y}) = \frac{1}{n} \sum_{x \in E} t_x^2 \geq 0,$$

with equality only where $a = 0$. So $\langle \ , \ \rangle$ is positive-definite. That it’s self-dualizing follows easily from $\hat{\eta}$’s being an order-isomorphism. □
Two Corollaries

Let A satisfy the assumptions of Lemma 1. Then

Corollary 1 (Spectral Uniqueness Theorem): Every $a \in E(A)$ has a unique expansion $a = \sum_i t_i e_i$ with e_i sharply distinguishable effects and t_i distinct.

This a gives us a functional calculus: with $a = \sum_i t_i e_i$ as above, define

$$f(a) = \sum_i f(t_i) e_i.$$

Corollary 2: If $\mathcal{M}(A)$ has rank two then the state space $\Omega(A)$ is a euclidean ball (hence, $E(A)$ is a spin factor).
Processes

A **process** from A to B is represented by a positive linear mapping

$$\tau : \mathbf{V}(A) \to \mathbf{V}(B) \text{ with } u_B(\tau(\alpha)) \leq 1 \forall \alpha \in \Omega(A).$$

Can think of $p = u_B(\tau(\alpha))$ as probability for the process to “fail” on input state α.

(Not every such mapping need count as a processes!)

τ is **reversible** iff \exists a process τ' such that $\tau' \circ \tau = p\text{id}$: with probability p, τ' reverses τ.

This implies τ is invertible with τ^{-1} positive, i.e., τ is an order-automorphism.
Filters and Homogeneity

A **filter** for \(E \in \mathcal{M}(A) \): a process \(\Phi : \mathcal{V}(A) \rightarrow \mathcal{V}(A) \) such that
\[
\forall x \in E \; \exists t_x \geq 0 \text{ with } \Phi(\alpha)(x) = t_x \alpha(x)
\]
for all \(\alpha \in \Omega(A) \).
A **filter** for $E \in \mathcal{M}(A)$: a process $\Phi : \mathcal{V}(A) \to \mathcal{V}(A)$ such that

$$\forall x \in E \ \exists t_x \geq 0 \text{ with } \ \Phi(\alpha)(x) = t_x \alpha(x)$$

for all $\alpha \in \Omega(A)$.

Example: For a density operator on \mathcal{H}, $\Phi : a \mapsto W^{1/2}aW^{1/2}$ is a filter for any eigenbasis of W, reversible iff W is nonsingular.
Filters and Homogeneity

A **filter** for $E \in \mathcal{M}(A)$: a process $\Phi : \mathbf{V}(A) \rightarrow \mathbf{V}(A)$ such that
\[
\forall x \in E \ \exists t_x \geq 0 \text{ with } \Phi(\alpha)(x) = t_x \alpha(x)
\]
for all $\alpha \in \Omega(A)$.

Example: For W a density operator on \mathcal{H}, $\Phi : a \mapsto W^{1/2}aW^{1/2}$ is a filter for any eigenbasis of W, reversible iff W is nonsingular.
Appealing to the KV Theorem,

Theorem 1: Let A satisfy hypotheses of Lemma 1. Then TAE:

(a) A has arbitrary reversible filters
(b) $V(A)$ is homogeneous
(c) $E(A)$ is a formally real Jordan algebra.

One can also show that then $X(A)$ is the set of all minimal idempotents in E, and $\mathcal{M}(A)$ is the set of Jordan frames, i.e., A is a *Jordan model* (see arXiv: 1206.2897).
Why spectrality?

A joint state $\omega \in \Omega(AB)$ **correlating** iff $\exists E \in \mathcal{M}(A), F \in \mathcal{M}(B),$ and partial bijection $f \subseteq E \times F$ such that

$$\omega(x, y) > 0 \iff (x, y) \in f.$$

Lemma 2: A sharp and $\omega \in \Omega(AB)$, correlating $\Rightarrow \omega_1$ spectral.

Proof: With $f \subseteq E \times F$ as above, $\omega_1|_{f(x)}(x) = 1$, so $\omega_1|_x(f(x)) = \delta_x$. By LOTP, $\alpha = \sum_{x \in \text{dom}(f)} \omega_2(f(x))\delta_x$. □

Correlation Postulate: Every state is the marginal of a correlating joint state.

So: CP implies spectrality. (Note affinity with the “purification postulate” of Chiribella et al.)
Memory and Correlation

Can the CP itself be further motivated?

Suppose the outcome of a test $E \in \mathcal{M}(A)$ is recorded in the state of an ancilla B. Then A and B must be in a joint state ω such that the conditional states $\omega_{2|x} := \beta_x$, $x \in E$, are sharply distinguishable, say by $F \in \mathcal{M}(B)$. Then ω correlates E with F. If the measurement of E doesn’t disturb α, then $\alpha = \omega_1$.

So we might adopt

Non-Disturbance Principle: For every state, there is a test that can be recorded in that state without disturbance.
Conclusion:

Four conditions characterize probabilistic models associated with formally real Jordan algebras:

(1) A is sharp,
(2) A has a conjugate,
(3) A satisfies the CP
(4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3) already yield a rich structure (Corollaries 1, 2).

Questions:

- Can one prove Theorem 1 without using the KV theorem?
- Can Lemma 1 help simplify earlier reconstruction results?
- Monoidal categories of probabilistic models having well-behaved conjugates are automatically dagger-compact, with η_A as “cup”. In such a category, is spectrality automatic?
Conclusion:

Four conditions characterize probabilistic models associated with formally real Jordan algebras:

(1) A is sharp,
(2) A has a conjugate,
(3) A satisfies the CP
(4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3) already yield a rich structure (Corollaries 1, 2).

Questions:

- Can one prove Theorem 1 without using the KV theorem?
- Can Lemma 1 help simplify earlier reconstruction results?
- Monoidal categories of probabilistic models having well-behaved conjugates are automatically dagger-compact, with η_A as “cup”. In such a category, is spectrality automatic?

Thanks!