Quantifying Contextuality
via linear programming

Samson Abramsky1 Rui Soares Barbosa1 Shane Mansfield2

1Department of Computer Science, University of Oxford
\{rui.soares.barbosa,samson.abramsky\}@cs.ox.ac.uk

2Institut de Recherche en Informatique Fondamentale, Université Paris Diderot – Paris 7
shane.mansfield@univ-paris-diderot.fr

Quantum Physics & Logic
University of Strathclyde, Glasgow, 8th June 2016
Quantifying Contextuality
via linear programming

Samson Abramsky1 \hspace{1cm} Rui Soares Barbosa1 \hspace{1cm} Shane Mansfield2

1Department of Computer Science, University of Oxford
\{rui.soares.barbosa,samson.abramsky\}@cs.ox.ac.uk

2Institut de Recherche en Informatique Fondamentale, Université Paris Diderot – Paris 7
shane.mansfield@univ-paris-diderot.fr

Quantum Physics & Logic
University of Strathclyde, Glasgow, 8th June 2016
Introduction

▶ unified framework for non-locality and contextuality in general measurement scenarios

Why?

▶ Comparing degree of contextuality of empirical models

▶ . . . and across different scenarios

▶ Contextuality as a resource

▶ There may be more than one useful measure
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models

Why?

- Comparing degree of contextuality of empirical models
- ... and across different scenarios
- Contextuality as a resource

There may be more than one useful measure
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models
- quantitative grading – measure of contextuality
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models
- quantitative grading – **measure of contextuality**

Why?
Introduction

▶ unified framework for non-locality and contextuality in general measurement scenarios
▶ qualitative hierarchy of contextuality for empirical models
▶ quantitative grading – **measure of contextuality**

Why?

▶ Comparing degree of contextuality of empirical models
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models
- quantitative grading – measure of contextuality

Why?

- Comparing degree of contextuality of empirical models
- ... and across different scenarios
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models
- quantitative grading – measure of contextuality

Why?

- Comparing degree of contextuality of empirical models
- ... and across different scenarios
- Contextuality as a resource
Introduction

- unified framework for non-locality and contextuality in general measurement scenarios
- qualitative hierarchy of contextuality for empirical models
- quantitative grading – **measure of contextuality**

Why?

- Comparing degree of contextuality of empirical models
- ... and across different scenarios
- Contextuality as a resource
- There may be more than one useful measure
Overview

We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:
We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

- Generality, i.e. applicable to any measurement scenario
Overview

We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

- Generality, i.e. applicable to any measurement scenario
- Normalisation, allowing comparison across scenarios
Overview

We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

- Generality, i.e. applicable to any measurement scenario
- Normalisation, allowing comparison across scenarios
- 0 for non-contextuality ... 1 for strong contextuality
Overview

We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

- Generality, i.e. applicable to any measurement scenario
- Normalisation, allowing comparison across scenarios
- 0 for non-contextuality . . . 1 for strong contextuality
- Computable, using linear programming
Overview

We introduce the **contextual fraction** (generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

- Generality, i.e. applicable to any measurement scenario
- Normalisation, allowing comparison across scenarios
- 0 for non-contextuality . . . 1 for strong contextuality
- Computable, using linear programming
- Precise relationship to **violations of Bell inequalities**
Contextuality
Empirical data

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>(0, 0)</td>
<td>(0, 1)</td>
<td>(1, 0)</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a₁</td>
<td>b₂</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>a₂</td>
<td>b₂</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
</tr>
</tbody>
</table>

{oₐ ∈ {0, 1}}

{oₐ ∈ {0, 1}}

{mₐ ∈ {a₁, a₂}}

{mₐ ∈ {a₁, a₂}}

{p}
Abramsky–Brandenburger framework

Measurement scenario $\langle X, M, O \rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- M is a cover of X, indicating **joint measurability** (contexts)

Example: (2,2,2) Bell scenario

- The set of variables is $X = \{a_1, a_2, b_1, b_2\}$.
- The outcomes are $O = \{0, 1\}$.
- The measurement contexts are:
 - $\{a_1, b_1\}$
 - $\{a_1, b_2\}$
 - $\{a_2, b_1\}$
 - $\{a_2, b_2\}$

A joint outcome or event in a context C is $s \in O^C$, e.g. $s = [a_1 \mapsto 0, b_1 \mapsto 1]$. (These correspond to the cells of our probability tables.)
Abramsky–Brandenburger framework

Measurement scenario $\langle X, M, O \rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario

- The set of variables is $X = \{a_1, a_2, b_1, b_2\}$.
- The outcomes are $O = \{0, 1\}$.
- The measurement contexts are:

$$\{ \{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\} \}$$
Abramsky–Brandenburger framework

Measurement scenario $\langle X, M, O \rangle$:
- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
- The set of variables is $X = \{a_1, a_2, b_1, b_2\}$.
- The outcomes are $O = \{0, 1\}$.
- The measurement contexts are:
 \[
 \{\{a_1, b_1\}, \{a_1, b_2\}, \{a_2, b_1\}, \{a_2, b_2\}\}
 \]

A joint outcome or event in a context C is $s \in O^C$, e.g.

\[
s = [a_1 \mapsto 0, b_1 \mapsto 1].
\]

(These correspond to the cells of our probability tables.)
Another example: 18-vector Kochen–Specker

- A set of 18 variables, $X = \{A, \ldots, O\}$
Another example: 18-vector Kochen–Specker

- A set of 18 variables, $X = \{A, \ldots, O\}$
- A set of outcomes $O = \{0, 1\}$
Another example: 18-vector Kochen–Specker

- A set of 18 variables, $X = \{A, \ldots, O\}$
- A set of outcomes $O = \{0, 1\}$
- A measurement cover $\mathcal{M} = \{C_1, \ldots, C_9\}$, whose contexts C_i correspond to the columns in the following table:

<table>
<thead>
<tr>
<th>U_1</th>
<th>U_2</th>
<th>U_3</th>
<th>U_4</th>
<th>U_5</th>
<th>U_6</th>
<th>U_7</th>
<th>U_8</th>
<th>U_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>I</td>
<td>P</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>I</td>
<td>K</td>
<td>E</td>
<td>K</td>
<td>Q</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>C</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>D</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>J</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>J</td>
<td>L</td>
<td>O</td>
</tr>
</tbody>
</table>
Empirical Models

Fix a measurement scenario $\langle X, M, O \rangle$.

Compatibility condition: these distributions "agree on overlaps", i.e.

$$e_C |_{C \cap C'} = e_{C'} |_{C \cap C'}.$$

where marginalisation of distributions: if $D \subseteq C$, $d \in \text{Prob}(O_C)$,

$$d |_{D}(s) := \sum_{t \in O_C, t |_{D} = s} d(t).$$
Empirical Models

Fix a measurement scenario $\langle X, M, O \rangle$.

Empirical model: family $\{e_C\}_{C \in M}$ where $e_C \in \text{Prob}(O^C)$ for $C \in M$.

It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.
Empirical Models

Fix a measurement scenario $\langle X, M, O \rangle$.

Empirical model: family $\{e_C\}_{C \in M}$ where $e_C \in \text{Prob}(O^C)$ for $C \in M$.

It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.

Compatibility condition: these distributions “agree on overlaps”, i.e.

$$\forall C, C' \in M \cdot e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

where marginalisation of distributions: if $D \subseteq C$, $d \in \text{Prob}(O^C)$,

$$d|_{D}(s) := \sum_{t \in O^C, t|_D = s} d(t).$$
Fix a measurement scenario \(\langle X, M, O \rangle \).

Empirical model: family \(\{ e_C \}_{C \in M} \) where \(e_C \in \text{Prob}(O^C) \) for \(C \in M \).

It specifies a probability distribution over the events in each context. These correspond to the rows of our probability tables.

Compatibility condition: these distributions “agree on overlaps”, i.e.

\[
\forall C, C' \in M \cdot e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.
\]

where marginalisation of distributions: if \(D \subseteq C, d \in \text{Prob}(O^C) \),

\[
d|_D(s) := \sum_{t \in O^C, t|_D=s} d(t).
\]

For multipartite scenarios, compatibility = the **no-signalling** principle.
Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \text{Prob}(O^X)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_C:

$$\exists d \in \text{Prob}(O^X) \cdot \forall C \in \mathcal{M} \cdot d|_C = e_C.$$
Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \text{Prob}(O^X)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_C:

$$\exists d \in \text{Prob}(O^X) \cdot \forall C \in \mathcal{M} \cdot d|_C = e_C.$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.
Contextuality

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** \(d \in \text{Prob}(O^X) \) (on the joint assignments of outcomes to all measurements) that marginalises to all the \(e_C \):

\[
\exists d \in \text{Prob}(O^X) \cdot \forall C \in \mathcal{M} \cdot d\mid_C = e_C.
\]

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality:
family of data which is **locally consistent** but **globally inconsistent**.
Contextuality

A (compatible) empirical model is **non-contextual** if there exists a **global distribution** $d \in \text{Prob}(O^X)$ (on the joint assignments of outcomes to all measurements) that marginalises to all the e_C:

$$\exists d \in \text{Prob}(O^X) \cdot \forall C \in \mathcal{M} \cdot d|_C = e_C.$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality:
family of data which is **locally consistent** but **globally inconsistent**.

The import of results such as Bell’s and Bell–Kochen–Specker’s theorems is that there are empirical models arising from quantum mechanics that are contextual.
Strong Contextuality:

no event can be extended to a global assignment.
Strong contextuality

Strong Contextuality: *no* event can be extended to a global assignment.

E.g. K–S models, GHZ, the PR box:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
The contextual fraction
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in M. \ d|_C = e_C.$$
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \ d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?
The contextual fraction

Non-contextuality: global distribution $d \in \text{Prob}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \ d|_C = e_C.$$

Which fraction of a model admits a non-contextual explanation?

Consider **subdistributions** $c \in \text{SubProb}(O^X)$ such that:

$$\forall C \in \mathcal{M}. \ c|_C \leq e_C.$$
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \quad d|_C = e_C.
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \quad c|_C \leq e_C.
\]

Non-contextual fraction: maximum weight of such a subdistribution.
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall C \in \mathcal{M} . \quad d|_C = e_C .
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall C \in \mathcal{M} . \quad c|_C \leq e_C .
\]

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight \(\lambda \) over all convex decompositions

\[
e = \lambda e^{NC} + (1 - \lambda) e'
\]

where \(e^{NC} \) is a non-contextual model.
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \quad d|_C = e_C.
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:

\[
\forall C \in \mathcal{M}. \quad c|_C \leq e_C.
\]

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight \(\lambda \) over all convex decompositions

\[
e = \lambda e^{NC} + (1 - \lambda) e^{SC}
\]

where \(e^{NC} \) is a non-contextual model. \(e^{SC} \) is strongly contextual!
The contextual fraction

Non-contextuality: global distribution \(d \in \text{Prob}(O^X) \) such that:
\[
\forall C \in \mathcal{M}. \quad d|_C = e_C.
\]

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions \(c \in \text{SubProb}(O^X) \) such that:
\[
\forall C \in \mathcal{M}. \quad c|_C \leq e_C.
\]

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight \(\lambda \) over all convex decompositions
\[
e = \lambda e^{NC} + (1 - \lambda) e^{SC}
\]

where \(e^{NC} \) is a non-contextual model. \(e^{SC} \) is strongly contextual!

\[
\text{NCF}(e) = \lambda \quad \text{CF}(e) = 1 - \lambda
\]
Computing the contextual fraction
Contextuality as a linear system

For a measurement scenario $\langle X, M, O \rangle$, the incidence matrix M has

- m rows indexed by $\langle C, s \rangle$, $C \in M$, $s \in O^C$
- n columns indexed by global assignments $g \in O^X$

$$M[\langle C, s \rangle, g] := \begin{cases} 1 & \text{if } g|_C = s \\ 0 & \text{otherwise} \end{cases}.$$
Contextuality as a linear system

For a measurement scenario \(\langle X, \mathcal{M}, O \rangle \), the incidence matrix \(M \) has

- \(m \) rows indexed by \(\langle C, s \rangle, C \in \mathcal{M}, s \in O^C \)
- \(n \) columns indexed by global assignments \(g \in O^X \)

\[
M[\langle C, s \rangle, g] := \begin{cases}
1 & \text{if } g|_C = s \\
0 & \text{otherwise}
\end{cases}
\]

An empirical model \(e \) can be flattened into a vector \(v^e \in \mathbb{R}^m \).
Contextuality as a linear system

For a measurement scenario $\langle X, \mathcal{M}, O \rangle$, the **incidence matrix** \mathbf{M} has

- m rows indexed by $\langle C, s \rangle$, $C \in \mathcal{M}$, $s \in O^C$
- n columns indexed by global assignments $g \in O^X$

$$
\mathbf{M}[\langle C, s \rangle, g] := \begin{cases}
1 & \text{if } g|_C = s \\
0 & \text{otherwise}
\end{cases}.
$$

An empirical model e can be flattened into a vector $\mathbf{v}^e \in \mathbb{R}^m$.

The columns of the matrix correspond to the deterministic NC models. Every NC model is a mixture of those.
Contextuality as a linear system

For a measurement scenario \(\langle X, M, O \rangle \), the incidence matrix \(M \) has

- \(m \) rows indexed by \(\langle C, s \rangle, C \in M, s \in O^C \)
- \(n \) columns indexed by global assignments \(g \in O^X \)

\[
M[\langle C, s \rangle, g] := \begin{cases} 1 & \text{if } g|_C = s \\ 0 & \text{otherwise} \end{cases}
\]

An empirical model \(e \) can be flattened into a vector \(v^e \in \mathbb{R}^m \).

The columns of the matrix correspond to the deterministic NC models. Every NC model is a mixture of those.

A probability distribution on global assignments \(O^X \) is given by a vector \(d \in \mathbb{R}^n \). The corresponding NC model is given by \(M \cdot d \).
Contextuality as a linear system

For a measurement scenario \(\langle X, M, O \rangle \), the **incidence matrix** \(M \) has

- \(m \) rows indexed by \(\langle C, s \rangle, C \in M, s \in O^C \)
- \(n \) columns indexed by global assignments \(g \in O^X \)

\[
M[\langle C, s \rangle, g] := \begin{cases}
1 & \text{if } g|_C = s \\
0 & \text{otherwise}
\end{cases}.
\]

An empirical model \(e \) can be flattened into a vector \(v^e \in \mathbb{R}^m \).

The columns of the matrix correspond to the deterministic NC models. Every NC model is a mixture of those.

A probability distribution on global assignments \(O^X \) is given by a vector \(d \in \mathbb{R}^n \). The corresponding NC model is given by \(M d \).

A model \(e \) is non-contextual if and only if there is \(d \in \mathbb{R}^n \) solving:

\[
M d = v^e \quad \text{with} \quad d \geq 0.
\]
Checking contextuality of e corresponds to solving

\[
\text{Find } \quad d \in \mathbb{R}^n \\
\text{such that } \quad M d = v^e \\
\text{and } \quad d \geq 0.
\]
Checking contextuality of e corresponds to solving

\[
\begin{align*}
\text{Find} \quad & \mathbf{d} \in \mathbb{R}^n \\
\text{such that} \quad & \mathbf{M} \mathbf{d} = \mathbf{v}^e \\
\text{and} \quad & \mathbf{d} \geq 0
\end{align*}
\]

Computing the non-contextual fraction corresponds to solving the following linear program:

\[
\begin{align*}
\text{Find} \quad & \mathbf{c} \in \mathbb{R}^n \\
\text{maximising} \quad & 1 \cdot \mathbf{c} \\
\text{subject to} \quad & \mathbf{M} \mathbf{c} \leq \mathbf{v}^e \\
\text{and} \quad & \mathbf{c} \geq 0
\end{align*}
\]
Violations of Bell inequalities
Generalised Bell inequalities

An inequality for a scenario \(\langle X, \mathcal{M}, O \rangle \) is given by:

- a set of coefficients \(\alpha = \{ \alpha(C, s) \}_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \)
- a bound \(R \).

For a model \(e \), the inequality reads as

\[
B_\alpha(e) \leq R,
\]

where

\[
B_\alpha(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s) e(C, s).
\]

Wlog we can take \(R \) non-negative (in fact, we can take \(R = 0 \)).

It is called a Bell inequality if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be tight.

S. Abramsky, R. S. Barbosa, & S. Mansfield
Generalised Bell inequalities

An inequality for a scenario $\langle X, M, O \rangle$ is given by:

- a set of coefficients $\alpha = \{\alpha(C, s)\}_{C \in M, s \in \mathcal{E}(C)}$
- a bound R.

For a model e, the inequality reads as

$$B_\alpha(e) \leq R,$$

where

$$B_\alpha(e) := \sum_{C \in M, s \in \mathcal{E}(C)} \alpha(C, s)e_C(s).$$
Generalised Bell inequalities

An inequality for a scenario \(\langle X, \mathcal{M}, O \rangle \) is given by:

- a set of coefficients \(\alpha = \{ \alpha(C, s) \}_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \)
- a bound \(R \).

For a model \(e \), the inequality reads as

\[
B_\alpha(e) \leq R,
\]

where

\[
B_\alpha(e) := \sum_{C \in \mathcal{M}, s \in \mathcal{E}(C)} \alpha(C, s)e_C(s).
\]

Wlog we can take \(R \) non-negative (in fact, we can take \(R = 0 \)).
Generalised Bell inequalities

An inequality for a scenario \(\langle X, M, O \rangle \) is given by:

- a set of coefficients \(\alpha = \{ \alpha(C, s) \}_{C \in M, s \in E(C)} \)
- a bound \(R \).

For a model \(e \), the inequality reads as

\[
B_\alpha(e) \leq R,
\]

where

\[
B_\alpha(e) := \sum_{C \in M, s \in E(C)} \alpha(C, s)e_C(s).
\]

Wlog we can take \(R \) non-negative (in fact, we can take \(R = 0 \)).

It is called a **Bell inequality** if it is satisfied by every NC model. If it is saturated by some NC model, the Bell inequality is said to be **tight**.
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $B_\alpha(e)$ amongst NC models.
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $B_\alpha(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \{ \alpha(C, s) \mid s \in \mathcal{E}(C) \}$$
Violation of a Bell inequality

A Bell inequality establishes a bound for the value of $B_\alpha(e)$ amongst NC models.

For a general (no-signalling) model e, the quantity is limited only by

$$\|\alpha\| := \sum_{C \in \mathcal{M}} \max \{\alpha(C, s) \mid s \in \mathcal{E}(C)\}$$

The **normalised violation** of a Bell inequality $\langle \alpha, R \rangle$ by an empirical model e is the value

$$\frac{\max\{0, B_\alpha(e) - R\}}{\|\alpha\| - R}.$$
Proposition
Let e be an empirical model.
Proposition
Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.

$e = \text{NCF}(e) + \text{CF}(e) e_{\text{NC}}$
Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.
- This is attained: there exists a Bell inequality whose normalised violation by e is exactly $\text{CF}(e)$.
Proposition

Let e be an empirical model.

- The normalised violation by e of any Bell inequality is at most $\text{CF}(e)$.

- This is attained: there exists a Bell inequality whose normalised violation by e is exactly $\text{CF}(e)$.

- Moreover, this Bell inequality is tight at “the” non-contextual model e^{NC}.

$$e = \text{NCF}(e)e^{\text{NC}} + \text{CF}(e)e^{\text{SC}}$$
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(\mathbf{c} \in \mathbb{R}^n \)
maximising \(1 \cdot \mathbf{c} \)
subject to \(\mathbf{M} \mathbf{c} \leq \mathbf{v}^e \)
and \(\mathbf{c} \geq \mathbf{0} \).

\[e = \lambda e^{NC} + (1 - \lambda)e^{SC} \text{ with } \lambda = 1 \cdot x^* . \]
Quantifying Contextuality LP:

Find \(\mathbf{c} \in \mathbb{R}^n \) maximising \(\mathbf{1} \cdot \mathbf{c} \)
subject to \(\mathbf{M} \mathbf{c} \leq \mathbf{v}^e \)
and \(\mathbf{c} \geq 0 \).

Dual LP:

Find \(\mathbf{y} \in \mathbb{R}^m \) minimising \(\mathbf{y} \cdot \mathbf{v}^e \)
subject to \(\mathbf{M}^T \mathbf{y} \geq 1 \)
and \(\mathbf{y} \geq 0 \).

\(e = \lambda e^{NC} + (1 - \lambda) e^{SC} \) with \(\lambda = \mathbf{1} \cdot \mathbf{x}^* \).

\(\mathbf{Q} \)
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find $\mathbf{c} \in \mathbb{R}^n$
maximising $1 \cdot \mathbf{c}$
subject to $\mathbf{M} \mathbf{c} \leq \mathbf{v}^e$
and $\mathbf{c} \geq 0$.

$$e = \lambda e^{NC} + (1 - \lambda)e^{SC} \text{ with } \lambda = 1 \cdot x^*.$$

Dual LP:

Find $\mathbf{y} \in \mathbb{R}^m$
minimising $\mathbf{y} \cdot \mathbf{v}^e$
subject to $\mathbf{M}^T \mathbf{y} \geq 1$
and $\mathbf{y} \geq 0$.

$a := 1 - |\mathbf{M}|\mathbf{y}$

S. Abramsky, R. S. Barbosa, & S. Mansfield
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find \(c \in \mathbb{R}^n \)
maximising \(1 \cdot c \)
subject to \(M c \leq v^e \)
and \(c \geq 0 \).

\(e = \lambda e^{NC} + (1 - \lambda)e^{SC} \) with \(\lambda = 1 \cdot x^* \).

Dual LP:

Find \(y \in \mathbb{R}^m \)
minimising \(y \cdot v^e \)
subject to \(M^T y \geq 1 \)
and \(y \geq 0 \).

\(a := 1 - |M|y \)

Find \(a \in \mathbb{R}^m \)
maximising \(a \cdot v^e \)
subject to \(M^T a \leq 0 \)
and \(a \leq 1 \).
Bell inequality violation and the contextual fraction

Quantifying Contextuality LP:

Find $c \in \mathbb{R}^n$
maximising $\mathbf{1} \cdot c$
subject to $M c \leq v^e$
and $c \geq 0$.

e = \lambda e^{NC} + (1 - \lambda) e^{SC}$ with $\lambda = \mathbf{1} \cdot x^*$.

Dual LP:

Find $y \in \mathbb{R}^m$
minimising $y \cdot v^e$
subject to $M^T y \geq 1$
and $y \geq 0$.

Find $a \in \mathbb{R}^m$
maximising $a \cdot v^e$
subject to $M^T a \leq 0$
and $a \leq 1$.

computes tight Bell inequality (separating hyperplane)
Computational explorations
Computational explorations

Computational tools (*Mathematica* package) to:

1. calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements
2. calculate the incidence matrix for any measurement scenario
3. quantify the degree of contextuality of any empirical model using the LP method
4. find the Bell inequality using the dual LP.
Computational explorations

Computational tools (*Mathematica* package) to:

1. calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements
Computational explorations

Computational tools (*Mathematica* package) to:

1. calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. calculate the incidence matrix for any measurement scenario
Computational explorations

Computational tools (*Mathematica* package) to:

1. calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. calculate the incidence matrix for any measurement scenario

3. quantify the degree of contextuality of any empirical model using the LP method
Computational explorations

Computational tools (*Mathematica* package) to:

1. calculate quantum empirical models from any (pure or mixed) state and any sets of compatible measurements

2. calculate the incidence matrix for any measurement scenario

3. quantify the degree of contextuality of any empirical model using the LP method

4. find the Bell inequality using the dual LP.
1. Equatorial measurements on $|\phi^+\rangle$

- two-qubit Bell state $|\phi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$
1. Equatorial measurements on $|\phi^+\rangle$

- two-qubit Bell state $|\phi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$

- Equatorial measurements at angles (ϕ_1, ϕ_2)
1. Equatorial measurements on $|\psi^+\rangle$

- Two-qubit Bell state $|\psi^+\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}$

- Equatorial measurements at angles (ϕ_1, ϕ_2)

- E.g. $(\phi_1, \phi_2) = (0, \pi/3)$ gives Bell–CHSH model

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>
1. Equatorial measurements on $|\phi^+\rangle$
1. Equatorial measurements on $|\phi^+\rangle$

The minima of the plot (maximum contextuality) occur when

$$\{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{8}, \frac{5\pi}{8} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}.$$
1. Equatorial measurements on $|\phi^+\rangle$

The minima of the plot (maximum contextuality) occur when

$$\{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{8}, \frac{5\pi}{8} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}.$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>p</td>
<td>$(\frac{1}{2} - p)$</td>
<td>$(\frac{1}{2} - p)$</td>
<td>p</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$(\frac{1}{2} - p)$</td>
<td>p</td>
<td>p</td>
<td>$(\frac{1}{2} - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$(\frac{1}{2} - p)$</td>
<td>p</td>
<td>p</td>
<td>$(\frac{1}{2} - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$(\frac{1}{2} - p)$</td>
<td>p</td>
<td>p</td>
<td>$(\frac{1}{2} - p)$</td>
</tr>
</tbody>
</table>

$$p = \frac{\sqrt{2} + 2}{8}$$
1. Equatorial measurements on $|\phi^+\rangle$

The minima of the plot (maximum contextuality) occur when

$$\{\phi_1, \phi_2\} \in \left\{\left\{\frac{\pi}{8}, \frac{5\pi}{8}\right\}, \left\{\frac{7\pi}{8}, \frac{3\pi}{8}\right\}\right\}.$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>p</td>
<td>$(1/2 - p)$</td>
<td>$(1/2 - p)$</td>
<td>p</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>$(1/2 - p)$</td>
<td>p</td>
<td>p</td>
<td>$(1/2 - p)$</td>
</tr>
</tbody>
</table>

$$p = \frac{\sqrt{2} + 2}{8}$$

Note that these achieve Tsirelson violation of the CHSH inequality.
2. Equatorial measurements on GHZ(n)

- n-partite GHZ states, given for $n > 2$ by:

$$|\psi_{\text{GHZ}(n)}\rangle = \frac{|\uparrow\rangle \otimes^n + |\downarrow\rangle \otimes^n}{\sqrt{2}}$$
2. Equatorial measurements on GHZ\(^{(n)}\)

- \(n\)-partite GHZ states, given for \(n > 2\) by:

\[
|\psi_{\text{GHZ}(n)}\rangle = \frac{|\uparrow\rangle \otimes^n + |\downarrow\rangle \otimes^n}{\sqrt{2}}
\]

- For \(n > 2\), Mermin considered Pauli \(X\) or \(Y\) measurements to provide logical proofs of non-locality.
2. Equatorial measurements on GHZ\((n) \)

- \(n \)-partite GHZ states, given for \(n > 2 \) by:

\[
|\psi_{\text{GHZ}(n)}\rangle = \frac{|\uparrow\rangle \otimes^n + |\downarrow\rangle \otimes^n}{\sqrt{2}}
\]

- For \(n > 2 \), Mermin considered Pauli \(X \) or \(Y \) measurements to provide logical proofs of non-locality

- Again, equatorial measurements on the Bloch sphere.
2. Equatorial measurements on GHZ(n)

Figure: Non-contextual fraction of empirical models obtained with equatorial measurements at ϕ_1 and ϕ_2 on each qubit of $|\psi_{\text{GHZ}(n)}\rangle$ with: (a) $n = 3$; (b) $n = 4$.
2. Equatorial measurements on GHZ\((n)\)

- \(n = 3\): minima of the plot reach 0 (strong contextuality) at

\[\{\phi_1, \phi_2\} \in \left\{\left\{\frac{\pi}{2}, 0\right\}, \left\{\frac{2\pi}{3}, \frac{\pi}{6}\right\}, \left\{\frac{5\pi}{6}, \frac{\pi}{3}\right\}\right\}.\]
2. Equatorial measurements on GHZ(n)

$n = 3$: minima of the plot reach 0 (strong contextuality) at

\[
\{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{2}, 0 \right\}, \left\{ \frac{2\pi}{3}, \frac{\pi}{6} \right\}, \left\{ \frac{5\pi}{6}, \frac{\pi}{3} \right\} \right\}.
\]

(ϕ_1, ϕ_2) = ($\pi/2, 0$) corresponds to the Pauli Y and X, yielding the usual GHZ model. Other minima are identical up to re-labelling: alternative sets of measurements on the GHZ state that still lead to the familiar parity argument.
2. Equatorial measurements on GHZ\((n)\)

- \(n = 3\): minima of the plot reach 0 (strong contextuality) at
 \[
 \{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{2}, 0 \right\}, \left\{ \frac{2\pi}{3}, \frac{\pi}{6} \right\}, \left\{ \frac{5\pi}{6}, \frac{\pi}{3} \right\} \right\}.
 \]

\((\phi_1, \phi_2) = (\pi/2, 0)\) corresponds to the Pauli Y and X, yielding the usual GHZ model. Other minima are identical up to re-labelling: alternative sets of measurements on the GHZ state that still lead to the familiar parity argument.

- \(n = 4\): minima of 0 occur at
 \[
 \{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{2}, 0 \right\}, \left\{ \frac{5\pi}{8}, \frac{\pi}{8} \right\}, \left\{ \frac{3\pi}{4}, \frac{\pi}{4} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}.
 \]
2. Equatorial measurements on $\text{GHZ}(n)$

- $n = 3$: minima of the plot reach 0 (strong contextuality) at
 \[
 \{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{2}, 0 \right\}, \left\{ \frac{2\pi}{3}, \frac{\pi}{6} \right\}, \left\{ \frac{5\pi}{6}, \frac{\pi}{3} \right\} \right\}.
 \]

$(\phi_1, \phi_2) = (\pi/2, 0)$ corresponds to the Pauli Y and X, yielding the usual GHZ model. Other minima are identical up to re-labelling: alternative sets of measurements on the GHZ state that still lead to the familiar parity argument.

- $n = 4$: minima of 0 occur at
 \[
 \{\phi_1, \phi_2\} \in \left\{ \left\{ \frac{\pi}{2}, 0 \right\}, \left\{ \frac{5\pi}{8}, \frac{\pi}{8} \right\}, \left\{ \frac{3\pi}{4}, \frac{\pi}{4} \right\}, \left\{ \frac{7\pi}{8}, \frac{3\pi}{8} \right\} \right\}.
 \]

- General n: equatorial measurements at
 \[
 (\phi_1, \phi_2) \in \left\{ \left(\frac{(n + k)\pi}{2n}, \frac{k\pi}{2n} \right) \mid 0 \leq k < n \right\}
 \]
on each qubit of the n-partite GHZ state give rise to the strongly contextual $\text{GHZ}(n)$ model.
Further directions

- Negative Probabilities
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O_X such that $q|_C = e^C$.
 - . . . with minimal weight $|q| = 1 + 2\epsilon$.
 - The value ϵ provides alternative measure of contextuality.
 - Corresponds to affine decomposition $e = (1 + \epsilon)e_1 - \epsilon e_2$ with e_1 and e_2 both non-contextual.
 - Corresponding inequalities $|B_\alpha(e)| \leq R$ for cyclic measurement scenarios.

- Resource Theory
 - More than one possible measure of contextuality.
 - What properties should a good measure satisfy?
 - Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)
 - Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

- Negative Probabilities

Alternative relaxation of global probability distribution requirement.

Find quasi-probability distribution \(q \) on \(O \) such that

\[
q \mid C = e^C
\]

. . . with minimal weight \(|q| = 1 + 2\epsilon \).

The value of \(\epsilon \) provides alternative measure of contextuality.

Corresponds to affine decomposition

\[
e = (1 + \epsilon)e_1 - \epsilon e_2
\]

with \(e_1 \) and \(e_2 \) both non-contextual.

Corresponding inequalities

\[
|B_\alpha(e)| \leq R
\]

Cyclic measurement scenarios

Resource Theory

More than one possible measure of contextuality.

What properties should a good measure satisfy?

Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.

- Find quasi-probability distribution q on O_X such that $q|_C = e^C$ with minimal weight $|q| = 1 + 2\epsilon$.

- The value ϵ provides alternative measure of contextuality.

- Corresponds to affine decomposition $e = (1 + \epsilon)e_1 - \epsilon e_2$ with e_1 and e_2 both non-contextual.

- Corresponding inequalities $|B_\alpha(e)| \leq R_C$.

- Cyclic measurement scenarios

- Resource Theory

- More than one possible measure of contextuality.

- What properties should a good measure satisfy?

- Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_C = e_C$

 The value ϵ provides alternative measure of contextuality.

 Corresponds to affine decomposition $e = (1 + \epsilon)e_1 - \epsilon e_2$ with e_1 and e_2 both non-contextual.

 Corresponding inequalities $|B_\alpha(e)| \leq R$ for cyclic measurement scenarios.

 More than one possible measure of contextuality.

 What properties should a good measure satisfy?

 Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

 Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_C = e_C$
 - ... with minimal weight $|q| = 1 + 2\epsilon$. The value ϵ provides alternative measure of contextuality.
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_C = e_C$
 - ... with minimal weight $|q| = 1 + 2\epsilon$.
 The value ϵ provides alternative measure of contextuality.
 - Corresponds to affine decomposition
 $$e = (1 + \epsilon) e_1 - \epsilon e_2$$
 with e_1 and e_2 both non-contextual.
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_C = e_C$
 - ... with minimal weight $|q| = 1 + 2\epsilon$.
 The value ϵ provides alternative measure of contextuality.
 - Corresponds to affine decomposition
 \[e = (1 + \epsilon)e_1 - \epsilon e_2 \]
 with e_1 and e_2 both non-contextual.
 - Corresponding inequalities $|B_\alpha(e)| \leq R$

- More than one possible measure of contextuality.

- Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

- Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...
Further directions

- **Negative Probabilities**
 - Alternative relaxation of global probability distribution requirement.
 - Find quasi-probability distribution q on O^X such that $q|_c = e_c$
 - ...with minimal weight $|q| = 1 + 2\epsilon$.
 The value ϵ provides alternative measure of contextuality.
 - Corresponds to affine decomposition
 \[e = (1 + \epsilon) e_1 - \epsilon e_2 \]
 with e_1 and e_2 both non-contextual.
 - Corresponding inequalities $|B_\alpha(e)| \leq R$
 - Cyclic measurement scenarios
Further directions

- Negative Probabilities
- Signalling models
Further directions

- Negative Probabilities
- **Signalling models**
 - Empirical data may sometimes not satisfy no-signalling (compatibility).

Given a signalling table, can we quantify amount of no-signalling and contextuality?

Similarly, we can define no-signalling fraction $\lambda_{NS} = \lambda_{NS} - (1 - \lambda_{SS})$.

Analysis of real data:

- $e_{Delft} \approx 0.0664 e_{NS} + 0.4073 e_{SC} + 0.5263 e_{NC}$
- $e_{NIST} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}$

First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!

Connections with Contextuality-by-Default (Dzhafarov et al.)

Resource Theory

More than one possible measure of contextuality.

What properties should a good measure satisfy?

Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

- Negative Probabilities
- **Signalling models**
 - Empirical data may sometimes not satisfy no-signalling (compatibility).
 - Given a signalling table, can we quantify amount of no-signalling and contextuality?

Connections with Contextuality-by-Default (Dzhafarov et al.)

Resource Theory

More than one possible measure of contextuality.

What properties should a good measure satisfy?

Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

▶ Negative Probabilities

▶ Signalling models
 ▶ Empirical data may sometimes not satisfy no-signalling (compatibility).
 ▶ Given a signalling table, can we quantify amount of no-signalling and contextuality?
 ▶ Similarly, we can define no-signalling fraction

\[
e = \lambda e^{NS} - (1 - \lambda) e^{SS}
\]

▶ Analysis of real data:
- \(e_{Delft} \approx 0.0664\)
- \(e_{SS} + 0.4073e_{SC} + 0.5263e_{NC}\)
- \(e_{NIST} \approx 0.0000049\)

 + 0.0000281e_{SC} + 0.9999670e_{NC}

▶ First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!

▶ Connections with Contextuality-by-Default (Dzhafarov et al.)

▶ Resource Theory

▶ More than one possible measure of contextuality.

▶ What properties should a good measure satisfy?

▶ Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

▶ Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Further directions

- Negative Probabilities

- Signalling models
 - Empirical data may sometimes not satisfy no-signalling (compatibility).
 - Given a signalling table, can we quantify amount of no-signalling and contextuality?
 - Similarly, we can define no-signalling fraction
 \[e = \lambda e^{\text{NS}} - (1 - \lambda) e^{\text{SS}} \]
 - Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664 \, e_{\text{SS}} + 0.4073 \, e_{\text{SC}} + 0.5263 \, e_{\text{NC}} \\
 e_{\text{NIST}} \approx 0.0000049 \, e_{\text{SS}} + 0.0000281 \, e_{\text{SC}} + 0.9999670 \, e_{\text{NC}}
 \]
Further directions

- **Negative Probabilities**

- **Signalling models**
 - Empirical data may sometimes not satisfy no-signalling (compatibility).
 - Given a signalling table, can we quantify amount of no-signalling and contextuality?
 - Similarly, we can define no-signalling fraction
 \[
 e = \lambda e^{NS} - (1 - \lambda) e^{SS}
 \]
 - Analysis of real data:
 \[
 e_{\text{Delft}} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC}
 \]
 \[
 e_{\text{NIST}} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC}
 \]
 - First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!

Connections with Contextuality-by-Default (Dzhafarov et al.)

Resource Theory

More than one possible measure of contextuality.

What properties should a good measure satisfy?

Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)

Towards a resource theory as for entanglement (e.g. LOCC), non-locality, ...
Further directions

▶ Negative Probabilities

▶ **Signalling models**

 ▶ Empirical data may sometimes not satisfy no-signalling (compatibility).

 ▶ Given a signalling table, can we quantify amount of no-signalling and contextuality?

 ▶ Similarly, we can define no-signalling fraction

 \[e = \lambda e^{NS} - (1 - \lambda) e^{SS} \]

 ▶ Analysis of real data:

 \[e_{Delft} \approx 0.0664 e_{SS} + 0.4073 e_{SC} + 0.5263 e_{NC} \]
 \[e_{NIST} \approx 0.0000049 e_{SS} + 0.0000281 e_{SC} + 0.9999670 e_{NC} \]

 ▶ First extract NS fraction, then NC fraction? Or vice-versa? Also: non-uniqueness of witnesses!

 ▶ Connections with Contextuality-by-Default (Dzhafarov et al.)
Further directions

- Negative Probabilities
- Signalling models
- Resource Theory
Further directions

- Negative Probabilities
- Signalling models
- **Resource Theory**
 - More than one possible measure of contextuality.
Further directions

- Negative Probabilities
- Signalling models
- **Resource Theory**
 - More than one possible measure of contextuality.
 - What properties should a good measure satisfy?
Further directions

- Negative Probabilities
- Signalling models
- **Resource Theory**
 - More than one possible measure of contextuality.
 - What properties should a good measure satisfy?
 - Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)
Further directions

- Negative Probabilities
- Signalling models
- **Resource Theory**
 - More than one possible measure of contextuality.
 - What properties should a good measure satisfy?
 - Operations that do not increase contextuality: relabellings, restriction, coarse-graining outcome values, tensoring, (some form of sequential composition?)
 - Towards a resource theory as for entanglement (e.g. LOCC), non-locality, . . .
Questions...