A topological perspective on interacting algebraic theories

Amar Hadzihasanovic

University of Oxford

Glasgow, 9 June 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convincing uses of string diagrams

Adjunctions: $\checkmark \checkmark$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Convincing uses of string diagrams

Monoids (and **Frobenius algebras**): $\checkmark \checkmark$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convincing uses of string diagrams

Monoids (and **Frobenius algebras**): $\sqrt{\checkmark}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

→ Spider laws in the ZX calculus

Bialgebras: not really!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bialgebras: not really!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightsquigarrow Find a topological explanation for this and similar laws

Teleportation (biunitaries): √

(Vicary, 2012, Higher quantum theory)

Homomorphisms of monads and other naturality equations: \checkmark

(Hinze, Marsden, 2016, Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers)

Homomorphisms of monads and other naturality equations: \checkmark

(Hinze, Marsden, 2016, Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers)

• Why does "sliding" appear in naturality equations?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

~ Orthogonality as the geometric correlate of naturality

 Traditionally: presentation of an algebraic theory = generators + relations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Traditionally: presentation of an algebraic theory = generators + relations
- Higher-dimensional rewriting: everything is a generator (in different dimensions)

- Traditionally: presentation of an algebraic theory = generators + relations
- Higher-dimensional rewriting: everything is a generator (in different dimensions)

Computads [polygraphs in HDR]: define higher-dimensional theory by progressively attaching cells of increasing dimension

- Traditionally: presentation of an algebraic theory = generators + relations
- Higher-dimensional rewriting: everything is a generator (in different dimensions)

Computads [polygraphs in HDR]: define higher-dimensional theory by progressively attaching cells of increasing dimension

- Traditionally: presentation of an algebraic theory = generators + relations
- Higher-dimensional rewriting: everything is a generator (in different dimensions)

Computads [polygraphs in HDR]: define higher-dimensional theory by progressively attaching cells of increasing dimension

So why not compose theories like topological spaces?

So why not compose theories like topological spaces?

Crans-Gray tensor product: an **asymmetric** tensor product \otimes of strict higher categories, that restricts to computads

So why not compose theories like topological spaces?

Crans-Gray tensor product: an **asymmetric** tensor product \otimes of strict higher categories, that restricts to computads

 Corresponds to the usual product of topological spaces, through geometric realisation

So why not compose theories like topological spaces?

Crans-Gray tensor product: an **asymmetric** tensor product \otimes of strict higher categories, that restricts to computads

 Corresponds to the usual product of topological spaces, through geometric realisation

(Also: disjoint unions, quotients, ...)

Cylinders and homomorphisms

$$I := 0 \bullet \xrightarrow{a} \bullet 1$$
, the "directed interval".

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$I := 0 \bullet \xrightarrow{a} \bullet 1$, the "directed interval". M presentation of the theory of monoids, μ multiplication 2-cell.

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

 $I := {}^{0} \bullet \xrightarrow{a} \bullet {}^{1}$, the "directed interval". *M* presentation of the theory of monoids, μ multiplication 2-cell. The **cylinder** $I \otimes M$ contains the (1 + 2) = 3-cell $a \otimes \mu$

 \Rightarrow

 $I := {}^{0} \bullet \xrightarrow{a} \bullet {}^{1}$, the "directed interval". M presentation of the theory of monoids, η unit 2-cell.

The **cylinder** $I \otimes M$ contains the (1+2) = 3-cell $a \otimes \eta$

Cylinders and homomorphisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Cylinders and homomorphisms

(In topology: **homotopy** of maps)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Monoidal" theories (only 1 colour) are naturally pointed spaces
Smash product X ∧ Y: quotient out X ⊗ {*_Y} and {*_X} ⊗ Y in X ⊗ Y

- "Monoidal" theories (only 1 colour) are naturally **pointed spaces**
 - Smash product X ∧ Y: quotient out X ⊗ {*_Y} and {*_X} ⊗ Y in X ⊗ Y

Graphically, at the lowest-dimensional level, erase everything but the *intersections* of diagrams coming from X and diagrams coming from Y.

- "Monoidal" theories (only 1 colour) are naturally **pointed spaces**
 - Smash product X ∧ Y: quotient out X ⊗ {*_Y} and {*_X} ⊗ Y in X ⊗ Y
- **Graphically**, at the lowest-dimensional level, erase everything but the *intersections* of diagrams coming from X and diagrams coming from Y.

We consider the smash product $M \wedge M$.

Topology of bialgebras

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

 A compositional approach to higher algebraic theories, importing tools from algebraic topology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 A compositional approach to higher algebraic theories, importing tools from algebraic topology

Thank you for your attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ