In search of the spectrum

Tom Leinster
University of Edinburgh
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities

Functional analysis and PDEs: more sophisticated relatives of the linear algebra notion

Commutative algebra: the spectrum of a commutative ring is its space of prime ideals

...and many more meanings, all related to one another.
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities

Functional analysis and PDEs: more sophisticated relatives of the linear algebra notion
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities

Functional analysis and PDEs: more sophisticated relatives of the linear algebra notion

Commutative algebra: the spectrum of a commutative ring is its space of prime ideals
Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities

Functional analysis and PDEs: more sophisticated relatives of the linear algebra notion

Commutative algebra: the spectrum of a commutative ring is its space of prime ideals

…and many more meanings, all related to one another.
Unrelated meanings of ‘spectrum’
Unrelated meanings of ‘spectrum’

Homotopy theory: spectrum \simeq infinite loop space.
Unrelated meanings of ‘spectrum’

Homotopy theory: spectrum ≈ infinite loop space.

Non-quantum computing:
Unrelated meanings of ‘spectrum’

Homotopy theory: spectrum ≈ infinite loop space.

Non-quantum computing:
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities. Algebraically and categorically, its properties seem awkward. For instance, given operators S and T on the same space, knowing $\text{Spec}(S)$ and $\text{Spec}(T)$ tells you almost nothing about $\text{Spec}(S \circ T)$ or $\text{Spec}(S + T)$. But socially, the spectrum is important! So, there ought to be a clean abstract characterization of it. This talk offers one.
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities.
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward.
I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward. For instance, given operators S and T on the same space, knowing $\text{Spec}(S)$ and $\text{Spec}(T)$ tells you almost nothing about $\text{Spec}(S \circ T)$ or $\text{Spec}(S + T)$.

But socially, the spectrum is important! So, there ought to be a clean abstract characterization of it. This talk offers one.
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward. For instance, given operators S and T on the same space, knowing $\text{Spec}(S)$ and $\text{Spec}(T)$ tells you almost nothing about $\text{Spec}(S \circ T)$ or $\text{Spec}(S + T)$.

But socially, the spectrum is important!
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set \(\text{Spec}(T) \) of eigenvalues of a linear operator \(T \) on a finite-dimensional vector space, with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward. For instance, given operators \(S \) and \(T \) on the same space, knowing \(\text{Spec}(S) \) and \(\text{Spec}(T) \) tells you almost nothing about \(\text{Spec}(S \circ T) \) or \(\text{Spec}(S + T) \).

But socially, the spectrum is important!
So, there ought to be a clean abstract characterization of it.
What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set $\text{Spec}(T)$ of eigenvalues of a linear operator T on a finite-dimensional vector space, with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward. For instance, given operators S and T on the same space, knowing $\text{Spec}(S)$ and $\text{Spec}(T)$ tells you almost nothing about $\text{Spec}(S \circ T)$ or $\text{Spec}(S + T)$.

But socially, the spectrum is important! So, there ought to be a clean abstract characterization of it. This talk offers one.
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal cyclic, balanced invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:
1. Linear Algebra Done Right
2. Invariants
3. Cyclic invariants
4. Balanced invariants
5. The theorem
The goal of the talk is to explain this theorem:
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces,
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal cyclic, balanced invariant
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal cyclic, balanced invariant
Outline

The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic, balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic*, *balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic, balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. *Linear Algebra Done Right*
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic, balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. *Linear Algebra Done Right*
2. Invariants
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic, balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. *Linear Algebra Done Right*
2. Invariants
3. Cyclic invariants
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal *cyclic, balanced* invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. *Linear Algebra Done Right*
2. Invariants
3. Cyclic invariants
4. Balanced invariants
The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces, the universal cyclic, balanced invariant is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. *Linear Algebra Done Right*
2. Invariants
3. Cyclic invariants
4. Balanced invariants
5. The theorem
1. Linear Algebra Done Right
Linear Algebra Done Right
by Sheldon Axler

Sheldon Axler (1975)

Book (1996)
The eventual image and eventual kernel
The eventual image and eventual kernel

Throughout:

- let k be an algebraically closed field
The eventual image and eventual kernel

Throughout:

- let k be an algebraically closed field
- let X be a finite-dimensional vector space over k
The eventual image and eventual kernel

Throughout:

- let k be an algebraically closed field
- let X be a finite-dimensional vector space over k
- let T be a linear operator on X (i.e. a linear map $T:X \rightarrow X$).
The eventual image and eventual kernel

Throughout:

- let k be an algebraically closed field
- let X be a finite-dimensional vector space over k
- let T be a linear operator on X (i.e. a linear map $T: X \rightarrow X$).

The eventual image $\text{im}^\infty(T)$ of T is the intersection of the chain of subspaces

$$\text{im}(T) \supseteq \text{im}(T^2) \supseteq \text{im}(T^3) \supseteq \ldots.$$
The eventual image and eventual kernel

Throughout:

- let k be an algebraically closed field
- let X be a finite-dimensional vector space over k
- let T be a linear operator on X (i.e. a linear map $T:X \rightarrow X$).

The eventual image $\text{im}^\infty(T)$ of T is the intersection of the chain of subspaces

$$\text{im}(T) \supseteq \text{im}(T^2) \supseteq \text{im}(T^3) \supseteq \cdots.$$

This is smaller than the ordinary image $\text{im}(T)$.

The eventual image and eventual kernel

Throughout:
- let k be an algebraically closed field
- let X be a finite-dimensional vector space over k
- let T be a linear operator on X (i.e. a linear map $T : X \to X$).

The eventual image $\text{im}^\infty(T)$ of T is the intersection of the chain of subspaces

\[\text{im}(T) \supseteq \text{im}(T^2) \supseteq \text{im}(T^3) \supseteq \ldots. \]

This is smaller than the ordinary image $\text{im}(T)$.

The eventual kernel $\text{ker}^\infty(T)$ of T is the union of the chain of subspaces

\[\text{ker}(T) \subseteq \text{ker}(T^2) \subseteq \text{ker}(T^3) \subseteq \ldots. \]
The eventual image and eventual kernel

Throughout:

- let \(k \) be an algebraically closed field
- let \(X \) be a finite-dimensional vector space over \(k \)
- let \(T \) be a linear operator on \(X \) (i.e. a linear map \(T: X \rightarrow X \)).

The **eventual image** \(\text{im}^\infty(T) \) of \(T \) is the intersection of the chain of subspaces

\[
\text{im}(T) \supseteq \text{im}(T^2) \supseteq \text{im}(T^3) \supseteq \cdots.
\]

This is *smaller* than the ordinary image \(\text{im}(T) \).

The **eventual kernel** \(\text{ker}^\infty(T) \) of \(T \) is the union of the chain of subspaces

\[
\text{ker}(T) \subseteq \text{ker}(T^2) \subseteq \text{ker}(T^3) \subseteq \cdots.
\]

This is *larger* than the ordinary kernel \(\text{ker}(T) \).
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X. Lemma

$$X/\ker(T) = \ker(T^\infty)/\ker(T) \oplus \im(T^\infty)/\ker(T)$$

where T^0 is nilpotent (i.e. some power of T^0 is 0) and T^\times is invertible.

In other words: (i) $X = \ker(T^\infty) \oplus \im(T^\infty)$, and (ii) T restricts to a nilpotent operator on $\ker(T^\infty)$ and an invertible operator on $\im(T^\infty)$.

This is the unique decomposition of T as the direct sum of a nilpotent operator and an invertible operator.

Contrast: usually $X \neq \ker(T) + \im(T)$, although we do have $\dim X = \dim \ker(T) + \dim \im(T)$.
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$X \oplus T = \ker^\infty(T) \oplus T_0 \oplus \text{im}^\infty(T) \oplus T^\times$
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$$X \oplus T = \ker^\infty(T) \oplus T_0 \oplus \im^\infty(T) \oplus T^\times$$

where T_0 is nilpotent (i.e. some power of T_0 is 0) and T^\times is invertible.
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$X \sqcup T = \ker^\infty(T) \sqcup T_0 \oplus \im^\infty(T) \sqcup T^\times$

where T_0 is nilpotent (i.e. some power of T_0 is 0) and T^\times is invertible.

In other words: (i) $X = \ker^\infty(T) \oplus \im^\infty(T)$, and
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$X \oslash T = \ker(T) \oslash T_0 \oplus \im(T) \oslash T^\times$

where T_0 is nilpotent (i.e. some power of T_0 is 0) and T^\times is invertible.

In other words: (i) $X = \ker(T) \oplus \im(T)$, and (ii) T restricts to a nilpotent operator on $\ker(T)$ and an invertible operator on $\im(T)$.
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$$X \cong T = \ker \infty(T) \oplus T_0 \oplus \im \infty(T) \oplus T^\times$$

where T_0 is nilpotent (i.e. some power of T_0 is 0) and T^\times is invertible.

In other words: (i) $X = \ker \infty(T) \oplus \im \infty(T)$, and (ii) T restricts to a nilpotent operator on $\ker \infty(T)$ and an invertible operator on $\im \infty(T)$.

This is the unique decomposition of T as the direct sum of a nilpotent operator and an invertible operator.
The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X.

Lemma

$$X \circlearrowleft T = \ker^\infty(T) \circlearrowleft T_0 \oplus \operatorname{im}^\infty(T) \circlearrowleft T^\times$$

where T_0 is nilpotent (i.e. some power of T_0 is 0) and T^\times is invertible.

In other words: (i) $X = \ker^\infty(T) \oplus \operatorname{im}^\infty(T)$, and (ii) T restricts to a nilpotent operator on $\ker^\infty(T)$ and an invertible operator on $\operatorname{im}^\infty(T)$.

This is the unique decomposition of T as the direct sum of a nilpotent operator and an invertible operator.

Contrast: usually $X \neq \ker(T) + \operatorname{im}(T)$, although we do have $\dim X = \dim \ker(T) + \dim \operatorname{im}(T)$.
The second canonical decomposition of a linear operator

\[\frac{X}{\ker(T - \lambda)} = \bigoplus_{\lambda \in k} \frac{\ker(\infty(T - \lambda))}{\ker(T - \lambda)} \]

where \(T - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T - \lambda \) is \(\lambda \)).

We call \(\ker(\infty(T - \lambda)) \) the eventual eigenspace (or generalized eigenspace) with value \(\lambda \).

It is bigger than the ordinary eigenspace, which consists of those vectors annihilated by applying \(T - \lambda \) just once.

Contrast: usually \(X \neq \bigoplus_{\lambda \in k} \ker(T - \lambda) \). They are equal iff \(T \) is diagonalizable.

The eventual eigenspace \(\ker(\infty(T - \lambda)) \) is trivial for all except finitely many values of \(\lambda \in k \)—namely, the eigenvalues.
The second canonical decomposition of a linear operator

Theorem

\[X \circ T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \circ T_\lambda \]
The second canonical decomposition of a linear operator

Theorem

\[X \simeq T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \circ T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T_\lambda \) is \(\lambda \)).
The second canonical decomposition of a linear operator

Theorem

\[X \otimes T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \otimes T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T_\lambda \) is \(\lambda \)).

We call \(\ker^\infty (T - \lambda) \) the eventual eigenspace (or generalized eigenspace) with value \(\lambda \).
The second canonical decomposition of a linear operator

Theorem

\[X \cong T = \bigoplus_{\lambda \in \mathbb{K}} \ker^\infty (T - \lambda) \cong T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T_\lambda \) is \(\lambda \)).

We call \(\ker^\infty (T - \lambda) \) the eventual eigenspace (or generalized eigenspace) with value \(\lambda \).

It is bigger than the ordinary eigenspace, which consists of those vectors annihilated by applying \(T - \lambda \) just once.
The second canonical decomposition of a linear operator

Theorem

\[X \cong T = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \cong T\lambda \]

where \(T\lambda - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T\lambda \) is \(\lambda \)).

We call \(\ker^\infty(T - \lambda) \) the **eventual eigenspace** (or **generalized eigenspace**) with value \(\lambda \).

It is bigger than the ordinary eigenspace, which consists of those vectors annihilated by applying \(T - \lambda \) just once.

Contrast: usually \(X \neq \bigoplus_{\lambda \in k} \ker(T - \lambda) \). They are equal iff \(T \) is diagonalizable.
The second canonical decomposition of a linear operator

Theorem

\[X \cong T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \cong T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent (i.e. the only eigenvalue of \(T_\lambda \) is \(\lambda \)).

We call \(\ker^\infty (T - \lambda) \) the **eventual eigenspace** (or generalized eigenspace) with value \(\lambda \).

It is bigger than the ordinary eigenspace, which consists of those vectors annihilated by applying \(T - \lambda \) just once.

Contrast: usually \(X \neq \bigoplus_{\lambda \in k} \ker (T - \lambda) \). They are equal iff \(T \) is diagonalizable.

The eventual eigenspace \(\ker^\infty (T - \lambda) \) is trivial for all except finitely many values of \(\lambda \in k \) — namely, the eigenvalues.
Comparing the two decompositions

First decomposition:

\[X/\cup_\infty T = \ker\infty(T)/\cup_\infty T_0 \oplus \im\infty(T)/\cup_\infty T \times \]

where \(T_0 \) is nilpotent and \(T \times \) is invertible.

Second decomposition:

\[X/\cup_\infty T = \lambda \in k \ker\infty(T-\lambda)/\cup_\infty T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent.

The two operators called ‘\(T_0 \)’ are the same, and the second decomposition refines the first:

\[\im\infty(T)/\cup_\infty T \times = \lambda \neq 0 \ker\infty(T-\lambda)/\cup_\infty T_\lambda . \]
Comparing the two decompositions

First decomposition:

\[X \odot T = \ker^\infty(T) \odot T_0 \oplus \im^\infty(T) \odot T^x \]

where \(T_0 \) is nilpotent and \(T^x \) is invertible.
Comparing the two decompositions

First decomposition:

\[X \otimes T = \ker^\infty (T) \oplus \im^\infty (T) \]

where \(T_0 \) is nilpotent and \(T^\times \) is invertible.

Second decomposition:

\[X \otimes T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \otimes T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent.
Comparing the two decompositions

First decomposition:

\[X \left\langle T \right\rangle = \ker^\infty(T) \left\langle T_0 \right\rangle \bigoplus \im^\infty(T) \left\langle T^\times \right\rangle \]

where \(T_0 \) is nilpotent and \(T^\times \) is invertible.

Second decomposition:

\[X \left\langle T \right\rangle = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \left\langle T_\lambda \right\rangle \]

where \(T_\lambda - \lambda \) is nilpotent.

The two operators called ‘\(T_0 \)’ are the same
Comparing the two decompositions

First decomposition:

\[X \odot T = \ker^\infty (T) \odot T_0 \oplus \im^\infty (T) \odot T^\times \]

where \(T_0 \) is nilpotent and \(T^\times \) is invertible.

Second decomposition:

\[X \odot T = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \odot T_\lambda \]

where \(T_\lambda - \lambda \) is nilpotent.

The two operators called ‘\(T_0 \)’ are the same, and the second decomposition refines the first:

\[\im^\infty (T) \odot T^\times = \bigoplus_{\lambda \neq 0} \ker^\infty (T - \lambda) \odot T_\lambda . \]
Algebraic multiplicity

Let $\lambda \in k$. The algebraic multiplicity of λ in T is $\alpha_T(\lambda) = \dim \ker \infty(T - \lambda)$. (We could also call it the 'dynamic multiplicity'.)

Note that $X = \lambda \in k \ker \infty(T - \lambda) \Rightarrow \dim X = \sum \lambda \in k \alpha_T(\lambda)$.

We can then define:

- **Trace**: $\operatorname{tr}(T) = \sum \lambda \in k \alpha_T(\lambda) \cdot \lambda$
- **Determinant**: $\det(T) = \prod \lambda \in k \lambda \alpha_T(\lambda)$
- **Characteristic polynomial**: $\chi_T(x) = \prod \lambda \in k (x - \lambda) \alpha_T(\lambda) = \det(x - T)$.

All have their usual meanings!
Let $\lambda \in k$.

Algebraic multiplicity

The algebraic multiplicity of λ in T is $\alpha_T(\lambda) = \dim \ker (T - \lambda)$. (We could also call it the 'dynamic multiplicity').

Note that $X = \{ \lambda \in k \mid \ker (T - \lambda) \Rightarrow \dim X = \sum_{\lambda \in k} \alpha_T(\lambda)$.

We can then define:

- **Trace**: $\text{tr}(T) = \sum_{\lambda \in k} \alpha_T(\lambda) \cdot \lambda$
- **Determinant**: $\text{det}(T) = \prod_{\lambda \in k} \lambda^{\alpha_T(\lambda)}$
- **Characteristic polynomial**: $\chi_T(x) = \prod_{\lambda \in k} (x - \lambda)^{\alpha_T(\lambda)} = \text{det}(x - T)$.

All have their usual meanings!
Algebraic multiplicity

Let $\lambda \in k$.

The algebraic multiplicity of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty(T - \lambda).$$

(We could also call it the ‘dynamic multiplicity’.)
Algebraic multiplicity

Let $\lambda \in k$.

The algebraic multiplicity of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty(T - \lambda).$$

(We could also call it the ‘dynamic multiplicity’.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \Rightarrow \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$
Algebraic multiplicity

Let $\lambda \in k$.

The algebraic multiplicity of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty(T - \lambda).$$

(We could also call it the ‘dynamic multiplicity’.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \implies \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$

We can then define:
Algebraic multiplicity

Let $\lambda \in k$.

The algebraic multiplicity of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty(T - \lambda).$$

(We could also call it the ‘dynamic multiplicity’.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \Rightarrow \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$

We can then define:

- **Trace**: $\text{tr}(T) = \sum_{\lambda \in k} \alpha_T(\lambda) \cdot \lambda$
Algebraic multiplicity

Let $\lambda \in k$.

The **algebraic multiplicity** of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty (T - \lambda).$$

(We could also call it the `dynamic multiplicity'.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \implies \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$

We can then define:

- **Trace**: $\text{tr}(T) = \sum_{\lambda \in k} \alpha_T(\lambda) \cdot \lambda$

- **Determinant**: $\text{det}(T) = \prod_{\lambda \in k} \lambda^{\alpha_T(\lambda)}$
Algebraic multiplicity

Let $\lambda \in k$.

The algebraic multiplicity of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty(T - \lambda).$$

(We could also call it the ‘dynamic multiplicity’.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty(T - \lambda) \implies \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$

We can then define:

- **Trace**: $\text{tr}(T) = \sum_{\lambda \in k} \alpha_T(\lambda) \cdot \lambda$

- **Determinant**: $\text{det}(T) = \prod_{\lambda \in k} \lambda^{\alpha_T(\lambda)}$

- **Characteristic polynomial**: $\chi_T(x) = \prod_{\lambda \in k} (x - \lambda)^{\alpha_T(\lambda)} = \det(x - T)$.
Algebraic multiplicity

Let $\lambda \in k$.

The **algebraic multiplicity** of λ in T is

$$\alpha_T(\lambda) = \dim \ker^\infty (T - \lambda).$$

(We could also call it the ‘**dynamic multiplicity**’.)

Note that

$$X = \bigoplus_{\lambda \in k} \ker^\infty (T - \lambda) \implies \dim X = \sum_{\lambda \in k} \alpha_T(\lambda).$$

We can then define:

- **Trace**: $\text{tr}(T) = \sum_{\lambda \in k} \alpha_T(\lambda) \cdot \lambda$

- **Determinant**: $\text{det}(T) = \prod_{\lambda \in k} \lambda^{\alpha_T(\lambda)}$

- **Characteristic polynomial**: $\chi_T(x) = \prod_{\lambda \in k} (x - \lambda)^{\alpha_T(\lambda)} = \det(x - T)$.

All have their usual meanings!
Functoriality of the eventual image

Given a category C, let $\text{Endo}(C)$ denote the category whose:

- objects are endomorphisms $X/\cong T$ in C
- maps $X/\cong T/\to Y/\cong S$ are maps $f : X/\to Y$ in C such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces. We're interested in $\text{Endo}(\text{FDVect})$, the category of linear operators.

There is a functor $\text{Endo}(\text{FDVect})/\to \text{Endo}(\text{FDVect}) X/\cong \text{im}_\infty(T)/\cong T \times/\to \text{im}_\infty(S)/\cong S \times$.

On maps, it's defined by restriction: any map of operators $f : X/\to Y$ restricts to a map $f : \text{im}_\infty(T)/\to \text{im}_\infty(S)$.
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms X/T in \mathcal{C}
- maps $X/T \to Y/S$ are maps $f : X \to Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces. We're interested in $\text{Endo}(\text{FDVect})$, the category of linear operators. There is a functor $\text{Endo}(\text{FDVect}) \to \text{Endo}(\text{FDVect}) \times \text{im}_\infty(T) \times \text{im}_\infty(S) \times$. On maps, it's defined by restriction: any map of operators $f : X/T \to Y/S$ restricts to a map $f : \text{im}_\infty(T) \times \to \text{im}_\infty(S) \times$.
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms $X \bowtie T$ in \mathcal{C}
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms $X \circ T$ in \mathcal{C}
- maps $X \circ T \to Y \circ S$ are maps $f: X \to Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces. We're interested in $\text{Endo}(\text{FDVect})$, the category of linear operators.

There is a functor $\text{Endo}(\text{FDVect}) \to \text{Endo}(\text{FDVect})$ such that:

- objects are sent to objects
- maps $X \circ T \to Y \circ S$ restrict to maps $f: \text{im} \infty(T) \to \text{im} \infty(S)$.

On maps, it's defined by restriction: any map of operators $f: X \to Y$ restricts to a map $f: \text{im} \infty(T) \to \text{im} \infty(S)$.

Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms $X \circ T$ in \mathcal{C}
- maps $X \circ T \rightarrow Y \circ S$ are maps $f: X \rightarrow Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces.
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- **objects** are endomorphisms $X \circ T$ in \mathcal{C}
- **maps** $X \circ T \longrightarrow Y \circ S$ are maps $f : X \longrightarrow Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces.

We’re interested in $\text{Endo}(\text{FDVect})$, the category of linear operators.
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- **objects** are endomorphisms $X\mathrel{\overset{\mathcal{O}}\rightarrow} T$ in \mathcal{C}
- **maps** $X\mathrel{\overset{\mathcal{O}}\rightarrow} T \rightarrow Y\mathrel{\overset{\mathcal{O}}\rightarrow} S$ are maps $f: X \rightarrow Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let \mathbf{FDVect} be the category of finite-dimensional vector spaces.
We’re interested in $\text{Endo}(\mathbf{FDVect})$, the category of linear operators.
There is a functor

$$
\begin{align*}
\text{Endo}(\mathbf{FDVect}) & \quad \longrightarrow \quad \text{Endo}(\mathbf{FDVect}) \\
X\mathrel{\overset{\mathcal{O}}\rightarrow} T & \quad \mapsto \quad \text{im}^{\infty}(T)\mathrel{\overset{\mathcal{O}}\rightarrow} T^\times.
\end{align*}
$$
Functoriality of the eventual image

Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms $X \circled{T}$ in \mathcal{C}
- maps $X \circled{T} \rightarrow Y \circled{S}$ are maps $f : X \rightarrow Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces.

We’re interested in $\text{Endo}(\text{FDVect})$, the category of linear operators.

There is a functor

$$\text{Endo}(\text{FDVect}) \xrightarrow{\text{ }} \text{Endo}(\text{FDVect})$$

$X \circled{T} \xmapsto{\text{restriction}} \text{im}^{\infty}(T) \circled{T^\times}$.

On maps, it’s defined by restriction:
Given a category \mathcal{C}, let $\text{Endo}(\mathcal{C})$ denote the category whose:

- objects are endomorphisms $X \circ T$ in \mathcal{C}
- maps $X \circ T \rightarrow Y \circ S$ are maps $f: X \rightarrow Y$ in \mathcal{C} such that $S \circ f = f \circ T$.

Let FDVect be the category of finite-dimensional vector spaces. We’re interested in $\text{Endo}(\text{FDVect})$, the category of linear operators. There is a functor

$$
\begin{align*}
\text{Endo}(\text{FDVect}) & \longrightarrow \text{Endo}(\text{FDVect}) \\
X \circ T & \mapsto \text{im}^\infty(T) \circ T^\times.
\end{align*}
$$

On maps, it’s defined by restriction: any map of operators $f: X \circ T \rightarrow Y \circ S$ restricts to a map $f: \text{im}^\infty(T) \circ T^\times \rightarrow \text{im}^\infty(S) \circ S^\times$.

Functoriality of the eventual image
2. Invariants
Definition and examples

Let E be a category. An invariant of objects of E is a function
$\text{ob}(E) / \cong = \{\text{isomorphism classes of objects of } E\} \rightarrow \Omega$,
where Ω is some set.

We're studying invariants of linear operators. So take $E = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators X:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity α_T (33 etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec} \times (T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k \times \{0\}$.
- The isomorphism type of $\text{im} \infty (T) \times T$. (Can describe these iso types concretely via Jordan normal form.)
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob}(\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \longrightarrow \Omega,$$

where Ω is some set.

We're studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators X/\cong:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity α_T (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec} \times(T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k = k \setminus \{0\}$.
- The isomorphism type of $\text{im} \infty(T)/\cong$. (Can describe these iso types concretely via Jordan normal form.)
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob}(\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \longrightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators X/\sim:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity α_T (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec}^\times(T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k^\times = k/\{0\}$.
- The isomorphism type of $\text{im}_\infty(T)/\sim$. (Can describe these iso types concretely via Jordan normal form.)
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob}(\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \rightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators $X \otimes T$:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity α_T (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec}^\times(T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k/\{0\}$.
- The isomorphism type of $\text{im}_\infty(T)/\cong T$. (Can describe these iso types concretely via Jordan normal form.)
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob} \, (\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \rightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators $X \otimes T$:

- The trace or determinant or characteristic polynomial.
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob}(\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \to \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators $X \otimes T$:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity $\alpha_T(33)$ (etc.).
Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob}(\mathcal{E})/\cong = \{\text{isomorphism classes of objects of } \mathcal{E}\} \rightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators $X \otimes T$:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity $\alpha_T(33)$ (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.

Definition and examples

Let \mathcal{E} be a category. An invariant of objects of \mathcal{E} is a function

$$\text{ob} \left(\mathcal{E} \right) / \cong = \{ \text{isomorphism classes of objects of } \mathcal{E} \} \rightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathcal{E} = \text{Endo} (\text{FDVect})$.

Examples of invariants of linear operators $X \otimes T$:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity $\alpha_T(33)$ (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec}^\times(T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k^\times = k \setminus \{0\}$.
Definition and examples

Let \mathscr{C} be a category. An invariant of objects of \mathscr{C} is a function

$$\text{ob}(\mathscr{C})/\cong = \{\text{isomorphism classes of objects of } \mathscr{C}\} \longrightarrow \Omega,$$

where Ω is some set.

We’re studying invariants of linear operators. So take $\mathscr{C} = \text{Endo}(\text{FDVect})$.

Examples of invariants of linear operators $X \mathrel{\circ} T$:

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity $\alpha_T(33)$ (etc.).
- The spectrum $\text{Spec}(T)$, defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of k.
- The invertible spectrum $\text{Spec}^\times(T)$, defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of $k^\times = k \setminus \{0\}$.
- The isomorphism type of $\text{im}^\infty(T) \mathrel{\circ} T^\times$.
Definition and examples

Let \(\mathcal{E} \) be a category. An invariant of objects of \(\mathcal{E} \) is a function

\[
\text{ob} (\mathcal{E}) / \cong = \{ \text{isomorphism classes of objects of } \mathcal{E} \} \longrightarrow \Omega,
\]

where \(\Omega \) is some set.

We’re studying invariants of linear operators. So take \(\mathcal{E} = \text{Endo} (\text{FDVect}) \).

Examples of invariants of linear operators \(X \otimes T \):

- The trace or determinant or characteristic polynomial.
- The algebraic multiplicity \(\alpha_T(33) \) (etc.).
- The spectrum \(\text{Spec}(T) \), defined as the set of eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of \(k \).
- The invertible spectrum \(\text{Spec}^\times(T) \), defined as the set of nonzero eigenvalues with their algebraic multiplicities. This is a finite subset-with-multiplicities of \(k^\times = k \setminus \{0\} \).
- The isomorphism type of \(\text{im}^\infty(T) \circ T^\times \).

(Or these iso types concretely via Jordan normal form.)
Digression on the invertible spectrum

We just defined the invertible spectrum $\text{Spec} \times (T)$ to be the set-with-multiplicities of nonzero eigenvalues. There's also $\text{Spec} (T)$, the set-with-multiplicities of all eigenvalues. Suppose we know $\dim X$. Then knowing $\text{Spec} \times (T)$ is equivalent to knowing $\text{Spec} (T)$, because

$$\alpha_0 (T) = \dim X - \sum_{\lambda \neq 0} \alpha_\lambda (T).$$

Why are the nonzero eigenvalues interesting?

- because they tell you the values of μ for which $\mu T - I$ is singular
- because of cyclicity.
Digression on the invertible spectrum

We just defined the invertible spectrum $\text{Spec}^\times(T)$ to be the set-with-multiplicities of nonzero eigenvalues.

Why are the nonzero eigenvalues interesting?

- because they tell you the values of μ for which $\mu T - I$ is singular
- because of cyclicity.
Digression on the invertible spectrum

We just defined the invertible spectrum $\text{Spec}^\times(T)$ to be the set-with-multiplicities of nonzero eigenvalues. There’s also $\text{Spec}(T)$, the set-with-multiplicities of all eigenvalues.
Digression on the invertible spectrum

We just defined the invertible spectrum Spec$^\times (T)$ to be the set-with-multiplicities of nonzero eigenvalues.

There's also Spec(T), the set-with-multiplicities of all eigenvalues.

Suppose we know dim X.
Digression on the invertible spectrum

We just defined the invertible spectrum \(\text{Spec}^\times(T) \) to be the set-with-multiplicities of nonzero eigenvalues.

There's also \(\text{Spec}(T) \), the set-with-multiplicities of all eigenvalues.

Suppose we know \(\dim X \).

Then knowing \(\text{Spec}^\times(T) \) is equivalent to knowing \(\text{Spec}(T) \).

Why are the nonzero eigenvalues interesting?

- because they tell you the values of \(\mu \) for which \(\mu T - I \) is singular
- because of cyclicity
We just defined the invertible spectrum $\text{Spec}^\times(T)$ to be the set-with-multiplicities of nonzero eigenvalues.

There’s also $\text{Spec}(T)$, the set-with-multiplicities of all eigenvalues.

Suppose we know $\dim X$.

Then knowing $\text{Spec}^\times(T)$ is equivalent to knowing $\text{Spec}(T)$, because

$$\alpha_0(T) = \dim X - \sum_{\lambda \neq 0} \alpha_\lambda(T).$$

Why are the nonzero eigenvalues interesting?
Digression on the invertible spectrum

We just defined the invertible spectrum $\text{Spec}^\times(T)$ to be the set-with-multiplicities of nonzero eigenvalues.

There’s also $\text{Spec}(T)$, the set-with-multiplicities of all eigenvalues.

Suppose we know $\dim X$.

Then knowing $\text{Spec}^\times(T)$ is equivalent to knowing $\text{Spec}(T)$, because

$$\alpha_0(T) = \dim X - \sum_{\lambda \neq 0} \alpha_\lambda(T).$$

Why are the nonzero eigenvalues interesting?

- because they tell you the values of μ for which $\mu T - I$ is singular
Digression on the invertible spectrum

We just defined the invertible spectrum $\text{Spec}^\times(T)$ to be the set-with-multiplicities of nonzero eigenvalues.

There’s also $\text{Spec}(T)$, the set-with-multiplicities of all eigenvalues.

Suppose we know $\dim X$.

Then knowing $\text{Spec}^\times(T)$ is equivalent to knowing $\text{Spec}(T)$, because

$$\alpha_0(T) = \dim X - \sum_{\lambda \neq 0} \alpha_\lambda(T).$$

Why are the **nonzero** eigenvalues interesting?

- because they tell you the values of μ for which $\mu T - I$ is singular
- because of cyclicity...
3. *Cyclic invariants*
Definition

Let \(C \) be a category. An invariant \(\Phi \) of endomorphisms in \(C \) is cyclic if
\[
\Phi(g \circ f) = \Phi(f \circ g)
\]
whenever \(X \xrightarrow{f} Y \xleftarrow{g} \) in \(C \).

Example: Trace is cyclic: \(\text{tr}(g \circ f) = \text{tr}(f \circ g) \).

A cyclic invariant \(\Phi \) assigns a value to any cycle
\[
X_n \xrightarrow{f_n} X_1 \xleftarrow{f_1} X_2 \xrightarrow{f_2} \ldots
\]
in \(C \), since \(\Phi(f_i \circ/ \ldots \circ/ f_1 \circ/ \ldots \circ/ f_n \circ/ \ldots) \) is independent of \(i \).
Definition

Let \mathcal{C} be a category. An invariant Φ of endomorphisms in \mathcal{C} is cyclic if

$$\Phi(g \circ f) = \Phi(f \circ g)$$

whenever $X \xleftarrow{g} \xrightarrow{f} Y$ in \mathcal{C}.

Example: Trace is cyclic: $\text{tr}(g \circ f) = \text{tr}(f \circ g)$.

A cyclic invariant Φ assigns a value to any cycle $X_1 \xrightarrow{f} X_2 \xrightarrow{f} \ldots \xrightarrow{f} X_n \xleftarrow{g} Y$ in \mathcal{C}, since $\Phi(f_i \circ f_{i+1}\circ/\ldots\circ f_1 \circ f_n\circ/\ldots\circ f_{i-1})$ is independent of i.
Definition

Let \mathcal{C} be a category. An invariant Φ of endomorphisms in \mathcal{C} is cyclic if

$$\Phi(g \circ f) = \Phi(f \circ g)$$

whenever $X \xrightarrow{f} Y$ in \mathcal{C}.

Example: Trace is cyclic: $\text{tr}(g \circ f) = \text{tr}(f \circ g)$.
Definition

Let \(\mathcal{C} \) be a category. An invariant \(\Phi \) of endomorphisms in \(\mathcal{C} \) is cyclic if

\[
\Phi(g \circ f) = \Phi(f \circ g)
\]

whenever \(X \xrightarrow{f} Y \) in \(\mathcal{C} \).

Example: Trace is cyclic: \(\text{tr}(g \circ f) = \text{tr}(f \circ g) \).

A cyclic invariant \(\Phi \) assigns a value to any cycle

\[
\begin{array}{c}
X_n \xrightarrow{f_n} X_1 \xrightarrow{f_1} X_2 \\
\downarrow \quad \quad \downarrow \\
X_3 \\
\end{array}
\]

in \(\mathcal{C} \), since \(\Phi(f_i \circ \cdots \circ f_1 \circ f_n \circ \cdots f_{i+1}) \) is independent of \(i \).
The eventual image is a cyclic invariant
The eventual image is a cyclic invariant

Given

\[X \xleftarrow{f} Y \]

in \textit{FDVect}

Conclusion: The isom'm type of $\text{im}_\infty(T)/\text{uni}_T \times T$ is a cyclic invariant of X/uni_T. (In fact, this is the initial cyclic invariant of linear operators.)
The eventual image is a cyclic invariant

Given

\[X \xleftarrow{f} Y \xrightarrow{g} \]

in \textbf{FDVect}, we get

\[X \otimes gf \xleftarrow{g} Y \otimes fg \xrightarrow{f} \]

in \textbf{Endo(FDVect)}

Conclusion: The isom'm type of \(\text{im} \infty \left(gf \right) \xrightarrow{uni} \left(gf \right) \times f \) is a cyclic invariant of \(X \xrightarrow{uni} Y \times g \).

(In fact, this is the initial cyclic invariant of linear operators.)
The eventual image is a cyclic invariant

Given

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{g} & & \downarrow{g} \\
\end{array}
\]

in \textbf{FDVect}, we get

\[
\begin{array}{ccc}
X & \xleftarrow{gf} & Y \\
\downarrow{g} & & \downarrow{g} \\
\end{array}
\]

in \textbf{Endo(FDVect)}, hence by functoriality of the eventual image,

\[
\begin{array}{ccc}
\text{im}^\infty (gf) & \xleftarrow{(gf)^\times} & \text{im}^\infty (fg) \\
\downarrow{g} & & \downarrow{g} \\
\end{array}
\]

in \textbf{Endo(FDVect)}.

Conclusion: The isomorphism type of \(\text{im}^\infty (T)\) is a cyclic invariant of \(X\).

(In fact, this is the initial cyclic invariant of linear operators.)
The eventual image is a cyclic invariant

Given

\[
\begin{array}{ccc}
X & \xleftarrow{f} & Y \\
\xrightarrow{g} & \quad & \\
\end{array}
\]

in \textbf{FDVect}, we get

\[
\begin{array}{ccc}
X \xleftarrow{gf} & \xrightarrow{f} & Y \xleftarrow{fg} \\
\xrightarrow{g} & \quad & \\
\end{array}
\]

in \textbf{Endo(FDVect)}, hence by functoriality of the eventual image,

\[
\begin{array}{ccc}
\text{im}^\infty(gf) \xleftarrow{(gf)^\times} & \xrightarrow{f} & \text{im}^\infty(fg) \xleftarrow{(fg)^\times} \\
\xrightarrow{g} & \quad & \\
\end{array}
\]

in \textbf{Endo(FD Vect)}.

But the composites of \(\xrightarrow{f} \) are \((gf)^\times\) and \((fg)^\times\)
The eventual image is a cyclic invariant

Given

\[
\begin{array}{c}
X \xrightarrow{f} Y \\
\xleftarrow{g} & \\
\end{array}
\]

in \textbf{FDVect}, we get

\[
\begin{array}{c}
X \circ gf \xrightarrow{f} Y \circ fg \\
\xleftarrow{g} & \\
\end{array}
\]

in \textbf{Endo(FDVect)}, hence by functoriality of the eventual image,

\[
\begin{array}{c}
im^\infty (gf) \circ (gf)^\times \xrightarrow{f} \im^\infty (fg) \circ (fg)^\times \\
\xleftarrow{g} & \\
\end{array}
\]

in \textbf{Endo(FDVect)}.

But the composites of \[
\begin{array}{c}
\xleftarrow{f} & \\
\xrightarrow{g} & \\
\end{array}
\]
are \((gf)^\times\) and \((fg)^\times\), which are invertible.
The eventual image is a cyclic invariant

Given

\[
\begin{array}{ccc}
X & \xleftarrow{f} & Y \\
\xleftarrow{g} & \end{array}
\]

in \textbf{FDVect}, we get

\[
\begin{array}{ccc}
X \circ gf & \xleftarrow{f} & Y \circ fg \\
\xleftarrow{g} & \end{array}
\]

in \textbf{Endo(FDVect)}, hence by functoriality of the eventual image,

\[
\begin{array}{ccc}
\text{im}^\infty (gf) \circ (gf)^\times & \xleftarrow{f} & \text{im}^\infty (fg) \circ (fg)^\times \\
\xleftarrow{g} & \end{array}
\]

in \textbf{Endo(FDVect)}.

But the composites of \(\xleftarrow{f} \) are \((gf)^\times\) and \((fg)^\times\), which are invertible, so

\[
\text{im}^\infty (gf) \circ (gf)^\times \cong \text{im}^\infty (fg) \circ (fg)^\times.
\]
The eventual image is a cyclic invariant

Given

\[\begin{array}{ccc}
X & \xleftarrow{f} & Y \\
\xleftarrow{g} & & \\
\end{array} \]

in \textbf{FDVect}, we get

\[\begin{array}{ccc}
X \ominus gf & \xleftarrow{f} & Y \ominus fg \\
\xleftarrow{g} & & \\
\end{array} \]

in \textbf{Endo}(\textbf{FDVect}), hence by functoriality of the eventual image,

\[\begin{array}{ccc}
im^\infty (gf) \ominus (gf)^\times & \xleftarrow{f} & im^\infty (fg) \ominus (fg)^\times \\
\xleftarrow{g} & & \\
\end{array} \]

in \textbf{Endo}(\textbf{FDVect}).

But the composites of \(\xleftarrow{f} \xrightarrow{g} \) are \((gf)^\times\) and \((fg)^\times\), which are invertible, so

\[\begin{array}{ccc}
im^\infty (gf) \ominus (gf)^\times & \cong & im^\infty (fg) \ominus (fg)^\times \\
\xleftarrow{f} \xrightarrow{g} & & \\
\end{array} \]
The eventual image is a cyclic invariant

Given

\[
X \xrightarrow{f} Y
\]

in \text{FDVect}, we get

\[
X \circlearrowleft g f \xleftarrow{g} X \circlearrowright \circlearrowleft g f \xleftrightarrow{g} Y \circlearrowright f g \xleftarrow{g}
\]

in \text{Endo(FDVect)}, hence by functoriality of the eventual image,

\[
\im^{\infty}(gf) \circlearrowleft (gf)^{\times} \xleftrightarrow{g} \im^{\infty}(fg) \circlearrowright (fg)^{\times}
\]

in \text{Endo(FDVect)}.

But the composites of \(g f \) are \((gf)^{\times}\) and \((fg)^{\times}\), which are invertible, so

\[
\im^{\infty}(gf) \circlearrowleft (gf)^{\times} \cong \im^{\infty}(fg) \circlearrowright (fg)^{\times}
\]

Conclusion: The isom’m type of \(\im^{\infty}(T) \circlearrowleft T^{\times} \) is a cyclic invariant of \(X \circlearrowleft T \).
The eventual image is a cyclic invariant

Given

\[X \xleftarrow{f} Y \]

in \textbf{FDVect}, we get

\[X \rightleftharpoons g \quad f \quad Y \rightleftharpoons g \]

in \textbf{Endo(FDVect)}, hence by functoriality of the eventual image,

\[\text{im}^\infty (gf) \rightleftharpoons (gf)^\times \quad f \quad \text{im}^\infty (fg) \rightleftharpoons (fg)^\times \]

in \textbf{Endo(FDVect)}.

But the composites of \(\xleftarrow{f} g \) are \((gf)^\times\) and \((fg)^\times\), which are invertible, so

\[\text{im}^\infty (gf) \rightleftharpoons (gf)^\times \cong \text{im}^\infty (fg) \rightleftharpoons (fg)^\times \]

Conclusion: \textit{The isom’m type of im}^\infty (T) \rightleftharpoons T^\times \textit{ is a cyclic invariant of } X \rightleftharpoons T. \]

(In fact, this is the \textit{initial} cyclic invariant of linear operators.)
The invertible spectrum is a cyclic invariant.
The invertible spectrum is a cyclic invariant

Again, take \(X \xleftarrow{g} Y \xrightarrow{f} \) in \(\text{FDVect} \).

A similar argument shows that \(\ker \infty (gf - \lambda) \cong \ker \infty (fg - \lambda) \) for all \(\lambda \neq 0 \).

So \(gf \) and \(fg \) have the same nonzero eigenvalues with the same algebraic multiplicities.

Conclusion: The invertible spectrum \(\text{Spec} \times \) is a cyclic invariant.

Fact of life: This fails for the eigenvalue 0. E.g. consider the first inclusion and first projection \(k \xleftrightarrow{g} k \oplus k \).

One composite has 0 as an eigenvalue, and the other does not. So, the multiplicity of 0 as an eigenvalue is not a cyclic invariant.
The invertible spectrum is a cyclic invariant

Again, take $X \xrightarrow{f} Y$ in FDVect.

A similar argument shows that

$$\ker^\infty(gf - \lambda) \cong \ker^\infty(fg - \lambda)$$

for all $\lambda \neq 0$.

Fact of life: This fails for the eigenvalue 0. E.g. consider the first inclusion and first projection $k \xleftrightarrow{g} k \oplus k$. One composite has 0 as an eigenvalue, and the other does not. So, the multiplicity of 0 as an eigenvalue is not a cyclic invariant.
The invertible spectrum is a cyclic invariant

Again, take \(X \xleftarrow{f} \xrightarrow{g} Y \) in \textbf{FDVect}.

A similar argument shows that

\[
\ker^\infty(gf - \lambda) \cong \ker^\infty(fg - \lambda)
\]

for all \(\lambda \neq 0 \).

So \(gf \) and \(fg \) have the same nonzero eigenvalues with the same algebraic multiplicities.
The invertible spectrum is a cyclic invariant

Again, take $X \xrightarrow{f} Y$ in FDVect.

A similar argument shows that

$$\ker^\infty (gf - \lambda) \cong \ker^\infty (fg - \lambda)$$

for all $\lambda \neq 0$.

So gf and fg have the same nonzero eigenvalues with the same algebraic multiplicities.

Conclusion: *The invertible spectrum Spec^\times is a cyclic invariant.*
The invertible spectrum is a cyclic invariant

Again, take $X \xrightarrow{f} Y$ in FDVect.

A similar argument shows that

$$\ker^\infty (gf - \lambda) \cong \ker^\infty (fg - \lambda)$$

for all $\lambda \neq 0$.

So gf and fg have the same nonzero eigenvalues with the same algebraic multiplicities.

Conclusion: The invertible spectrum Spec^\times is a cyclic invariant.

Fact of life: This fails for the eigenvalue 0.
The invertible spectrum is a cyclic invariant

Again, take $X \xleftarrow{g} \xrightarrow{f} Y$ in FDVect.

A similar argument shows that

$$\ker^\infty (gf - \lambda) \cong \ker^\infty (fg - \lambda)$$

for all $\lambda \neq 0$.

So gf and fg have the same nonzero eigenvalues with the same algebraic multiplicities.

Conclusion: The invertible spectrum Spec^\times is a cyclic invariant.

Fact of life: This fails for the eigenvalue 0.

E.g. consider the first inclusion and first projection $k \nleftrightarrow k \oplus k$.
One composite has 0 as an eigenvalue, and the other does not.
The invertible spectrum is a cyclic invariant

Again, take $X \xrightarrow{f} Y$ in FDVect.

A similar argument shows that

$$\ker^\infty (gf - \lambda) \cong \ker^\infty (fg - \lambda)$$

for all $\lambda \neq 0$.

So gf and fg have the same nonzero eigenvalues with the same algebraic multiplicities.

Conclusion: The invertible spectrum Spec^\times is a cyclic invariant.

Fact of life: This fails for the eigenvalue 0.

E.g. consider the first inclusion and first projection $k \cong k \oplus k$.

One composite has 0 as an eigenvalue, and the other does not.

So, the multiplicity of 0 as an eigenvalue is not a cyclic invariant.
4. Balanced invariants
Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’.

Formally: given a ring R, define R^{op} by reversing the order of multiplication. This defines an automorphism $(__)^{\text{op}}$ of the category of rings.

Then R is right perfect $\iff R^{\text{op}}$ is left perfect.

Given a compact metric space X, let $N^1(X)$ be the number of balls of radius 1 needed to cover X.

If $N^1(X)$ is interesting then so too must be $N^r(X)$ (the number of balls of radius r needed to cover X), for every $r > 0$.

Formally: define tX to be X scaled up by a factor of t.

For each $t > 0$, this defines an automorphism $t\cdot -$ of the category of metric spaces.

Then $N^r(X) = N^1\left(\frac{1}{r}X\right)$.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring R, define R^{op} by reversing the order of multiplication.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring R, define R^{op} by reversing the order of multiplication. This defines an automorphism $(\)^{\text{op}}$ of the category of rings.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring R, define R^{op} by reversing the order of multiplication. This defines an automorphism $(\quad)^{\text{op}}$ of the category of rings. Then R is right perfect $\iff R^{\text{op}}$ is left perfect.

Given a compact metric space X, let $N_1(X)$ be the number of balls of radius 1 needed to cover X.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring \(R \), define \(R^{\text{op}} \) by reversing the order of multiplication. This defines an automorphism \((_)^{\text{op}}\) of the category of rings. Then \(R \) is right perfect \(\iff \) \(R^{\text{op}} \) is left perfect.

Given a compact metric space \(X \), let \(N_1(X) \) be the number of balls of radius 1 needed to cover \(X \). If \(N_1(X) \) is interesting then so too must be \(N_r(X) \) (the number of balls of radius \(r \) needed to cover \(X \)), for every \(r > 0 \).
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring \(R \), define \(R^{\text{op}} \) by reversing the order of multiplication. This defines an automorphism \((\)^{\text{op}}\) of the category of rings. Then \(R \) is right perfect \iff \(R^{\text{op}} \) is left perfect.

Given a compact metric space \(X \), let \(N_1(X) \) be the number of balls of radius 1 needed to cover \(X \).

If \(N_1(X) \) is interesting then so too must be \(N_r(X) \) (the number of balls of radius \(r \) needed to cover \(X \)), for every \(r > 0 \). Formally: define \(tX \) to be \(X \) scaled up by a factor of \(t \).
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring R, define R^{op} by reversing the order of multiplication. This defines an automorphism $(\)^{\text{op}}$ of the category of rings. Then R is right perfect $\iff R^{\text{op}}$ is left perfect.

Given a compact metric space X, let $N_1(X)$ be the number of balls of radius 1 needed to cover X.

If $N_1(X)$ is interesting then so too must be $N_r(X)$ (the number of balls of radius r needed to cover X), for every $r > 0$.

Formally: define tX to be X scaled up by a factor of t.

For each $t > 0$, this defines an automorphism $t \cdot -$ of the category of metric spaces.
Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings. Then you know there must be an equally important invariant, ‘right perfect’. Formally: given a ring R, define R^{op} by reversing the order of multiplication. This defines an automorphism $(\quad)^{\text{op}}$ of the category of rings. Then R is right perfect $\iff R^{\text{op}}$ is left perfect.

Given a compact metric space X, let $N_1(X)$ be the number of balls of radius 1 needed to cover X.

If $N_1(X)$ is interesting then so too must be $N_r(X)$ (the number of balls of radius r needed to cover X), for every $r > 0$.

Formally: define tX to be X scaled up by a factor of t. For each $t > 0$, this defines an automorphism $t \cdot -$ of the category of metric spaces.

Then $N_r(X) = N_1((1/r)X)$.

Looking at an object from all directions
Looking at an object from all directions

We agree that being invertible is an important property of linear operators.
We agree that being invertible is an important property of linear operators. For each $\lambda \in k$, we have an automorphism $T \mapsto T - \lambda$ of the category $\text{Endo}(\text{FDVect})$ of operators.
We agree that being invertible is an important property of linear operators. For each $\lambda \in k$, we have an automorphism $T \mapsto T - \lambda$ of the category $\text{Endo}(\text{FDVect})$ of operators.

So, given an operator T, it must be important to ask for each $\lambda \in k$ whether $T - \lambda$ is invertible.
Looking at an object from all directions

We agree that being invertible is an important property of linear operators. For each \(\lambda \in k \), we have an automorphism \(T \mapsto T - \lambda \) of the category \(\text{Endo}(\text{FDVect}) \) of operators.

So, given an operator \(T \), it must be important to ask for each \(\lambda \in k \) whether \(T - \lambda \) is invertible...and of course it is important!
 Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’.

E.g. \{rings\} \leftarrow true, false is not balanced, but \{rings\} \leftarrow (left perf?, right perf?) \rightarrow \{true, false\} \times \{true, false\} is.

E.g. \{compact metric spaces\} \rightarrow \mathbb{N} is not balanced, but \{compact metric spaces\} \rightarrow (\mathbb{N}_r)_{r > 0} \rightarrow \{functions \mathbb{R}_+ \rightarrow \mathbb{N}\} is.

E.g. \{linear operators\} \leftarrow injective? \rightarrow \{true, false\} is not balanced, but \{linear operators\} \leftarrow eigenvalues \rightarrow \{subsets of k\} is.
Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{E},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{E}$.
Balanced invariants

Let \mathcal{C} be a category. An invariant Φ of objects of \mathcal{C} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{C},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{C}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.
Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{E},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{E}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.

E.g. $\{\text{rings}\}^{\text{left perfect?}} \rightarrow \{\text{true}, \text{false}\}$ is not balanced
Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{E},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{E}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.

E.g. $\{\text{rings}\} \xrightarrow{\text{left perfect?}} \{\text{true, false}\}$ is not balanced, but

$\{\text{rings}\} \xrightarrow{(\text{left perf?}, \text{right perf?})} \{\text{true, false}\} \times \{\text{true, false}\}$ is.

E.g. $\{\text{compact metric spaces}\} \xrightarrow{N_1} N$ is not balanced, but

$\{\text{compact metric spaces}\} \xrightarrow{N_{r > 0}} \{\text{functions} \ R^+ \to N\}$ is.

E.g. $\{\text{linear operators}\} \xrightarrow{\text{injective?}} \{\text{true, false}\}$ is not balanced, but

$\{\text{linear operators}\} \xrightarrow{\text{eigenvalues}} \{\text{subsets of} \ \mathbb{K}\}$ is.
Balanced invariants

Let \(\mathcal{E} \) be a category. An invariant \(\Phi \) of objects of \(\mathcal{E} \) is balanced if it ‘looks at objects from all directions’: formally, for every automorphism \(F \) of \(\mathcal{E} \),

\[
\Phi(E_1) = \Phi(E_2) \quad \iff \quad \Phi(F(E_1)) = \Phi(F(E_2))
\]

for \(E_1, E_2 \in \mathcal{E} \).

In other words: \(\Phi \) is balanced if \(\Phi(E) \) determines \(\Phi(F(E)) \).

E.g. \(\{ \text{rings} \} \xrightarrow{\text{left perfect?}} \{ \text{true, false} \} \) is not balanced, but

\(\{ \text{rings} \} \xrightarrow{\text{(left perf?, right perf?)}} \{ \text{true, false} \} \times \{ \text{true, false} \} \) is.

E.g. \(\{ \text{compact metric spaces} \} \xrightarrow{N_1} \mathbb{N} \) is not balanced
Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{E},

$$\Phi(E_1) = \Phi(E_2) \quad \Rightarrow \quad \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{E}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.

E.g. $\{\text{rings}\} \xrightarrow{\text{left perfect?}} \{\text{true}, \text{false}\}$ is not balanced, but $\{\text{rings}\} \xrightarrow{(\text{left perf?}, \text{right perf?})} \{\text{true}, \text{false}\} \times \{\text{true}, \text{false}\}$ is.

E.g. $\{\text{compact metric spaces}\} \xrightarrow{N_1} \mathbb{N}$ is not balanced, but $\{\text{compact metric spaces}\} \xrightarrow{(N_r)_{r>0}} \{\text{functions } \mathbb{R}^+ \to \mathbb{N}\}$ is.
Balanced invariants

Let \mathcal{C} be a category. An invariant Φ of objects of \mathcal{C} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{C},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{C}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.

E.g. $\{\text{rings}\} \xrightarrow{\text{left perfect?}} \{\text{true, false}\}$ is not balanced, but $\{\text{rings}\} \xrightarrow{(\text{left perf?}, \text{right perf?})} \{\text{true, false}\} \times \{\text{true, false}\}$ is.

E.g. $\{\text{compact metric spaces}\} \xrightarrow{N_1} \mathbb{N}$ is not balanced, but $\{\text{compact metric spaces}\} \xrightarrow{(N_r)_{r>0}} \{\text{functions} \mathbb{R}^+ \to \mathbb{N}\}$ is.

E.g. $\{\text{linear operators}\} \xrightarrow{\text{injective?}} \{\text{true, false}\}$ is not balanced
Balanced invariants

Let \mathcal{E} be a category. An invariant Φ of objects of \mathcal{E} is balanced if it ‘looks at objects from all directions’: formally, for every automorphism F of \mathcal{E},

$$\Phi(E_1) = \Phi(E_2) \implies \Phi(F(E_1)) = \Phi(F(E_2))$$

for $E_1, E_2 \in \mathcal{E}$.

In other words: Φ is balanced if $\Phi(E)$ determines $\Phi(F(E))$.

E.g. $\{\text{rings}\} \xrightarrow{\text{left perfect?}} \{\text{true, false}\}$ is not balanced, but $\{\text{rings}\} \xrightarrow{(\text{left perf?}, \text{right perf?})} \{\text{true, false}\} \times \{\text{true, false}\}$ is.

E.g. $\{\text{compact metric spaces}\} \xrightarrow{N_1} \mathbb{N}$ is not balanced, but $\{\text{compact metric spaces}\} \xrightarrow{(N_r)_{r>0}} \{\text{functions } \mathbb{R}^+ \rightarrow \mathbb{N}\}$ is.

E.g. $\{\text{linear operators}\} \xrightarrow{\text{injective?}} \{\text{true, false}\}$ is not balanced, but $\{\text{linear operators}\} \xrightarrow{\text{eigenvalues}} \{\text{subsets of } k\}$ is.
The (invertible) spectrum is a balanced invariant
The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec^\times on $\text{Endo}(\text{FDVect})$ (the category of operators).
The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec$^\times$ on Endo(FDVect) (the category of operators).

This category has some obvious automorphisms: those of the form $T \mapsto \alpha T + \beta$, where $\alpha, \beta \in k$ with $\alpha \neq 0$.
The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec$^\times$ on Endo(\textbf{FDVect}) (the category of operators).

This category has some obvious automorphisms: those of the form $T \mapsto \alpha T + \beta$, where $\alpha, \beta \in k$ with $\alpha \neq 0$.

Fix α and β. For all operators T,

$$\text{Spec}(\alpha T + \beta) = \alpha \text{Spec}(T) + \beta$$
The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec^\times on $\text{Endo}(\text{FDVect})$ (the category of operators).

This category has some obvious automorphisms: those of the form $T \mapsto \alpha T + \beta$, where $\alpha, \beta \in k$ with $\alpha \neq 0$.

Fix α and β. For all operators T,

$$\text{Spec}(\alpha T + \beta) = \alpha \text{Spec}(T) + \beta,$$

so $\text{Spec}(T)$ determines $\text{Spec}(\alpha T + \beta)$.
The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec$^\times$ on Endo(\textbf{FDVect}) (the category of operators).

This category has some obvious automorphisms: those of the form $T \mapsto \alpha T + \beta$, where $\alpha, \beta \in k$ with $\alpha \neq 0$.

Fix α and β. For all operators T,

$$\text{Spec}(\alpha T + \beta) = \alpha \text{Spec}(T) + \beta,$$

so Spec(T) determines Spec($\alpha T + \beta$).

There are also some non-obvious automorphisms of Endo(\textbf{FDVect})!

Even so, it’s a fact that Spec(T) determines Spec($\Phi(T)$) for all automorphisms Φ of Endo(\textbf{FDVect}).
The (invertible) spectrum is a balanced invariant

We have invariants \(\text{Spec} \) and \(\text{Spec}^\times \) on \(\text{Endo}(\text{FDVect}) \) (the category of operators).

This category has some obvious automorphisms: those of the form \(T \mapsto \alpha T + \beta \), where \(\alpha, \beta \in k \) with \(\alpha \neq 0 \).

Fix \(\alpha \) and \(\beta \). For all operators \(T \),

\[
\text{Spec}(\alpha T + \beta) = \alpha \text{Spec}(T) + \beta,
\]

so \(\text{Spec}(T) \) determines \(\text{Spec}(\alpha T + \beta) \).

There are also some non-obvious automorphisms of \(\text{Endo}(\text{FDVect}) \)!

Even so, it’s a fact that \(\text{Spec}(T) \) determines \(\text{Spec}(\Phi(T)) \) for all automorphisms \(\Phi \) of \(\text{Endo}(\text{FDVect}) \).

The same is true of \(\text{Spec}^\times \) (for slightly more subtle reasons).
The (invertible) spectrum is a balanced invariant

We have invariants \(\text{Spec} \) and \(\text{Spec}^\times \) on \(\text{Endo}(\text{FDVect}) \) (the category of operators).

This category has some obvious automorphisms: those of the form \(T \mapsto \alpha T + \beta \), where \(\alpha, \beta \in k \) with \(\alpha \neq 0 \).

Fix \(\alpha \) and \(\beta \). For all operators \(T \),

\[
\text{Spec}(\alpha T + \beta) = \alpha \text{Spec}(T) + \beta,
\]

so \(\text{Spec}(T) \) determines \(\text{Spec}(\alpha T + \beta) \).

There are also some non-obvious automorphisms of \(\text{Endo}(\text{FDVect}) \)!

Even so, it's a fact that \(\text{Spec}(T) \) determines \(\text{Spec}(\Phi(T)) \) for all automorphisms \(\Phi \) of \(\text{Endo}(\text{FDVect}) \).

The same is true of \(\text{Spec}^\times \) (for slightly more subtle reasons).

In other words, \(\text{Spec} \) and \(\text{Spec}^\times \) are balanced invariants of linear operators.
5. The theorem
The theorem

Theorem

Spec^x is the universal cyclic, balanced invariant of linear operators on finite-dimensional k-vector spaces.
The theorem

Theorem

\(\text{Spec}^x \) is the universal cyclic, balanced invariant of linear operators on finite-dimensional \(k \)-vector spaces.

That is: let \(\Omega \) be a set and take \(\Phi: \text{ob} \left(\text{Endo}(\text{FDVect}) \right)/\cong \rightarrow \Omega \)
The theorem

Theorem

Spec^\times is the universal cyclic, balanced invariant of linear operators on finite-dimensional k-vector spaces.

That is: let Ω be a set and take $\Phi : \text{ob}(\text{Endo}(\text{FDVect}))/\cong \rightarrow \Omega$ such that

1. $\Phi(g \circ f) = \Phi(f \circ g)$ whenever $X \xleftarrow{g} \xrightarrow{f} Y$ in FDVect;
The theorem

Theorem

\(\text{Spec}^\times \) is the universal cyclic, balanced invariant of linear operators on finite-dimensional \(k \)-vector spaces.

That is: let \(\Omega \) be a set and take \(\Phi: \text{ob}(\text{Endo}(\text{FDVect}))/\cong \to \Omega \) such that

i. \(\Phi(g \circ f) = \Phi(f \circ g) \) whenever \(X \xrightarrow{f} Y \) in \(\text{FDVect} \);

ii. \(\Phi(T_1) = \Phi(T_2) \implies \Phi(F(T_1)) = \Phi(F(T_2)) \)

for all linear operators \(T_1, T_2 \) and automorphisms \(F \) of \(\text{Endo}(\text{FDVect}) \).
The theorem

Theorem

Spec× is the universal cyclic, balanced invariant of linear operators on finite-dimensional k-vector spaces.

That is: let Ω be a set and take \(\Phi : \text{ob}(\text{Endo}(\text{FDVect}))/\cong \rightarrow \Omega \) such that

i. \(\Phi(g \circ f) = \Phi(f \circ g) \) whenever \(X \xrightarrow{f} Y \) in FDVect;

ii. \(\Phi(T_1) = \Phi(T_2) \implies \Phi(F(T_1)) = \Phi(F(T_2)) \)

for all linear operators \(T_1, T_2 \) and automorphisms \(F \) of \(\text{Endo}(\text{FDVect}) \).

Then there exists a unique \(\Phi \) such that

\[\{\text{operators}\} \xrightarrow{\text{Spec}^\times} \{\text{finite subsets-with-multiplicity of } k^\times\} \]

\[\Phi \]

\[\Omega \]

commutes.
The theorem

Theorem

\(\text{Spec}^\times \) is the universal cyclic, balanced invariant of linear operators on finite-dimensional \(k \)-vector spaces.

That is: let \(\Omega \) be a set and take \(\Phi : \text{ob}(\text{Endo}(\text{FDVect}))/\cong \to \Omega \) such that

\begin{enumerate}
 \item \(\Phi(g \circ f) = \Phi(f \circ g) \) whenever \(X \xrightarrow{f} Y \) in \(\text{FDVect} \);
 \item \(\Phi(T_1) = \Phi(T_2) \implies \Phi(F(T_1)) = \Phi(F(T_2)) \)
 for all linear operators \(T_1, T_2 \) and automorphisms \(F \) of \(\text{Endo}(\text{FDVect}) \).
\end{enumerate}

Then there exists a unique \(\Phi \) such that

\[
\begin{array}{ccc}
\{ \text{operators} \} & \xrightarrow{\text{Spec}^\times} & \{ \text{finite subsets-with-multiplicity of } k^\times \} \\
\Phi & \downarrow & \Phi \\
& \Omega & \\
\end{array}
\]

commutes. (Thus, any such \(\Phi \) is a specialization of \(\text{Spec}^\times \).)
The theorem

Theorem

\(\text{Spec}^\times \) is the universal cyclic, balanced invariant of linear operators on finite-dimensional \(k \)-vector spaces.

That is: let \(\Omega \) be a set and take \(\Phi : \text{ob}(\text{Endo}(\text{FDVect}))/\cong \rightarrow \Omega \) such that

1. \(\Phi(g \circ f) = \Phi(f \circ g) \) whenever \(X \xrightarrow{f} Y \) in \(\text{FDVect} \);
2. \(\Phi(T_1) = \Phi(T_2) \implies \Phi(F(T_1)) = \Phi(F(T_2)) \)
 for all linear operators \(T_1, T_2 \) and automorphisms \(F \) of \(\text{Endo}(\text{FDVect}) \).

Then there exists a unique \(\Phi \) such that

\[
\begin{array}{ccc}
\text{operators} & \xrightarrow{\text{Spec}^\times} & \{\text{finite subsets-with-multiplicity of } k^\times\} \\
\Phi \downarrow & & \Phi \downarrow \\
\Downarrow \Phi & & \Downarrow \Phi \\
\Phi & & \Omega
\end{array}
\]

commutes. (Thus, any such \(\Phi \) is a specialization of \(\text{Spec}^\times \).)

E.g.: \(\text{tr} \) is cyclic and balanced
The theorem

Theorem

Spec^\times is the universal cyclic, balanced invariant of linear operators on finite-dimensional k-vector spaces.

That is: let Ω be a set and take $\Phi: \text{ob}(\text{Endo}(\text{FDVect}))/\cong \rightarrow \Omega$ such that

i. $\Phi(g \circ f) = \Phi(f \circ g)$ whenever $X \xleftarrow{f} \xrightarrow{g} Y$ in FDVect;

ii. $\Phi(T_1) = \Phi(T_2) \implies \Phi(F(T_1)) = \Phi(F(T_2))$

for all linear operators T_1, T_2 and automorphisms F of $\text{Endo}(\text{FDVect})$.

Then there exists a unique Φ such that

$$\xymatrix{
\{\text{operators}\} \ar[r]^{\text{Spec}^\times} \ar[d]_{\Phi} & \{\text{finite subsets-with-multiplicity of } k^\times\} \ar[l]_{\Phi} \\
\Omega }
$$

commutes. (Thus, any such Φ is a specialization of Spec^\times.)

E.g.: tr is cyclic and balanced, and indeed $\text{tr}(T) = \sum_{\lambda \in k^\times} \alpha_T(\lambda) \cdot \lambda$.

Imitating the (invertible) spectrum in other categories

What happens if you replace \(\text{FDVect} \) by a different category? That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \(C \), for some other category \(C \)?

Example: In \(\text{FinSet} \), a typical endomorphism looks like this: The universal cyclic, balanced invariant of endomorphisms in \(\text{FinSet} \) is \(X/T (\text{number of 1-cycles}, \text{number of 2-cycles}, \text{number of 3-cycles}, \ldots) \). That's the 'invertible spectrum' of an operator on a finite set.
Imitating the (invertible) spectrum in other categories

What happens if you replace \texttt{FDVect} by a different category?
Imitating the (invertible) spectrum in other categories

What happens if you replace \textbf{FDVect} by a different category?
That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \mathcal{C}, for some other category \mathcal{C}?

\textbf{Example:} In FinSet, a typical endomorphism looks like this: The universal cyclic, balanced invariant of endomorphisms in FinSet is $X/\text{uni293E}T/\text{uni21A6}(\text{number of 1-cycles}, \text{number of 2-cycles}, \text{number of 3-cycles}, \ldots)$. That's the 'invertible spectrum' of an operator on a finite set.
Imitating the (invertible) spectrum in other categories

What happens if you replace \textbf{FDVect} by a different category?

That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \(\mathcal{C} \), for some other category \(\mathcal{C} \)?

Example: In \textbf{FinSet}, a typical endomorphism looks like this:

![Diagram of a typical endomorphism in FinSet](image-url)
Imitating the (invertible) spectrum in other categories

What happens if you replace \textbf{FDVect} by a different category?
That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \(\mathcal{C} \), for some other category \(\mathcal{C} \)?

Example: In \textbf{FinSet}, a typical endomorphism looks like this:

The universal cyclic, balanced invariant of endomorphisms in \textbf{FinSet} is

\[
X \odot T \mapsto (\text{number of 1-cycles}, \text{number of 2-cycles}, \text{number of 3-cycles}, \ldots).
\]
Imitating the (invertible) spectrum in other categories

What happens if you replace \textbf{FDVect} by a different category?
That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \(\mathcal{C} \), for some other category \(\mathcal{C} \)?

\textbf{Example:} In \textbf{FinSet}, a typical endomorphism looks like this:

The universal cyclic, balanced invariant of endomorphisms in \textbf{FinSet} is

\[X \mathcal{O} T \mapsto (\text{number of 1-cycles, number of 2-cycles, number of 3-cycles, \ldots}). \]
Imitating the (invertible) spectrum in other categories

What happens if you replace \textbf{FDVect} by a different category?
That is: what if we look for the universal cyclic, balanced invariant of endomorphisms in \(C \), for some other category \(C \)?

Example: In \textbf{FinSet}, a typical endomorphism looks like this:

The universal cyclic, balanced invariant of endomorphisms in \textbf{FinSet} is

\[X \circ T \mapsto (\text{number of 1-cycles, number of 2-cycles, number of 3-cycles, \ldots}). \]

That’s the ‘invertible spectrum’ of an operator on a finite set.
Postscript: Commutative rings and topos theory
From commutative rings to linear operators

The spectrum $\text{Spec} (R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case: Given an operator T, put $R(T) = k[x] / (\chi_T(x))$. Then the prime ideals of $R(T)$ are $(x - \lambda_1), \ldots, (x - \lambda_m)$ where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$.

Thus, the linear-algebraic spectrum $\text{Spec} (T)$ can be recovered from the ring-theoretic spectrum $\text{Spec} (R(T))$.

But how can we understand the ring-theoretic spectrum abstractly?
From commutative rings to linear operators

The spectrum \(\text{Spec}(R) \) of a (commutative) ring \(R \) is the set of prime ideals of \(R \).
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$. Thus, the linear-algebraic spectrum $\text{Spec}(T)$ can be recovered from the ring-theoretic spectrum $\text{Spec}(R(T))$.

But how can we understand the ring-theoretic spectrum abstractly?
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = k[x]/\chi_T(x)$. Then the prime ideals of $R(T)$ are $(x - \lambda_1), \ldots, (x - \lambda_m)$ where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$.

Thus, the linear-algebraic spectrum $\text{Spec}(T)$ can be recovered from the ring-theoretic spectrum $\text{Spec}(R(T))$.

But how can we understand the ring-theoretic spectrum abstractly?
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = \mathbb{K}[x]/\chi_T(x)$.

Then the prime ideals of $R(T)$ are $(x - \lambda_1), \ldots, (x - \lambda_m)$ where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$.

Thus, the linear-algebraic spectrum $\text{Spec}(T)$ can be recovered from the ring-theoretic spectrum $\text{Spec}(R(T))$.

But how can we understand the ring-theoretic spectrum abstractly?
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = k[x]/(\chi_T(x))$.

From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = k[x]/(\chi_T(x))$. Then the prime ideals of $R(T)$ are

$$(x - \lambda_1), \ldots, (x - \lambda_m)$$

where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$. Thus, the linear-algebraic spectrum $\text{Spec}(T)$ can be recovered from the ring-theoretic spectrum $\text{Spec}(R(T))$. But how can we understand the ring-theoretic spectrum abstractly?
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = k[x]/(\chi_T(x))$.

Then the prime ideals of $R(T)$ are

$$(x - \lambda_1), \ldots, (x - \lambda_m)$$

where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$.
From commutative rings to linear operators

The spectrum $\text{Spec}(R)$ of a (commutative) ring R is the set of prime ideals of R, equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T, put $R(T) = k[x]/(\chi_T(x))$.

Then the prime ideals of $R(T)$ are

$$(x - \lambda_1), \ldots, (x - \lambda_m)$$

where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of T.

Moreover, the stalks of the sheaf of local rings have dimensions $\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m)$.

Thus, the linear-algebraic spectrum $\text{Spec}(T)$ can be recovered from the ring-theoretic spectrum $\text{Spec}(R(T))$.
From commutative rings to linear operators

The spectrum \(\text{Spec}(R) \) of a (commutative) ring \(R \) is the set of prime ideals of \(R \), equipped with:

- a certain topology
- a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator \(T \), put \(R(T) = k[x]/(\chi_T(x)) \).

Then the prime ideals of \(R(T) \) are

\[(x - \lambda_1), \ldots, (x - \lambda_m)\]

where \(\lambda_1, \ldots, \lambda_m \) are the eigenvalues of \(T \).

Moreover, the stalks of the sheaf of local rings have dimensions

\(\alpha_T(\lambda_1), \ldots, \alpha_T(\lambda_m) \).

Thus, the linear-algebraic spectrum \(\text{Spec}(T) \) can be recovered from the ring-theoretic spectrum \(\text{Spec}(R(T)) \).

But how can we understand the ring-theoretic spectrum abstractly?
Hakim’s theorem

Monique Hakim (1986)

Book (1972)
Rings vs. local rings

Fact: The inclusion functor \(\text{local rings} \to \text{rings} \) has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let \(\text{RingTopos} \) be the category of pairs \((E, R)\) where \(E \) is a topos and \(R \) is a ring in \(E \).

Let \(\text{LocRingTopos} \) be the category of pairs \((E, R)\) where \(E \) is a topos and \(R \) is a local ring in \(E \).

Fact: The inclusion functor \(\text{LocRingTopos} \to \text{RingTopos} \) has a right adjoint (for completely general reasons).

You can think of the adjoint as constructing the 'free local ring' on a ring: but it might live in a different topos from the ring you started with.
Rings vs. local rings

Fact: The inclusion functor

$\text{(local rings)} \leftrightarrow \text{(rings)}$

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let RingTopos be the category of pairs (E, R) where E is a topos and R is a ring in E.

Let LocRingTopos be the category of pairs (E, R) where E is a topos and R is a local ring in E.

Fact: The inclusion functor $\text{LocRingTopos} \hookrightarrow \text{RingTopos}$ has a right adjoint (for completely general reasons).

You can think of the adjoint as constructing the 'free local ring' on a ring: but it might live in a different topos from the ring you started with.
Rings vs. local rings

Fact: The inclusion functor

\[(\text{local rings}) \hookrightarrow (\text{rings})\]

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.
Rings vs. local rings

Fact: The inclusion functor

\[(\text{local rings}) \leftrightarrow (\text{rings})\]

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let \textbf{RingTopos} be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a ring in \(\mathcal{E}\).
Rings vs. local rings

Fact: The inclusion functor

\[(\text{local rings}) \hookrightarrow (\text{rings})\]

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let \textbf{RingTopos} be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a ring in \(\mathcal{E}\).

Let \textbf{LocRingTopos} be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a local ring in \(\mathcal{E}\).
Rings vs. local rings

Fact: The inclusion functor

\[(\text{local rings}) \hookrightarrow (\text{rings})\]

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let \(\text{RingTopos}\) be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a ring in \(\mathcal{E}\).

Let \(\text{LocRingTopos}\) be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a local ring in \(\mathcal{E}\).

Fact: The inclusion functor

\[\text{LocRingTopos} \hookrightarrow \text{RingTopos}\]

has a right adjoint
Rings vs. local rings

Fact: The inclusion functor

\[
\text{(local rings)} \rightarrow \text{(rings)}
\]

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let \(\text{RingTopos} \) be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a ring in \(\mathcal{E}\).

Let \(\text{LocRingTopos} \) be the category of pairs \((\mathcal{E}, R)\) where \(\mathcal{E}\) is a topos and \(R\) is a local ring in \(\mathcal{E}\).

Fact: The inclusion functor

\[
\text{LocRingTopos} \rightarrow \text{RingTopos}
\]

does not have an adjoint (for completely general reasons).

You can think of the adjoint as constructing the ‘free local ring’ on a ring:

but it might live in a different topos from the ring you started with.
Rings vs. local rings

Fact: The inclusion functor

$$(\text{local rings}) \hookrightarrow \text{(rings)}$$

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let RingTopos be the category of pairs (\mathcal{E}, R) where \mathcal{E} is a topos and R is a ring in \mathcal{E}.

Let LocRingTopos be the category of pairs (\mathcal{E}, R) where \mathcal{E} is a topos and R is a local ring in \mathcal{E}.

Fact: The inclusion functor

$$\text{LocRingTopos} \hookrightarrow \text{RingTopos}$$

has a right adjoint (for completely general reasons).

You can think of the adjoint as constructing the ‘free local ring’ on a ring: *but* it might live in a different topos from the ring you started with.
The spectrum as the free local ring

Let R be a ring. Then R is a ring in \mathbf{Set}, so determines an object (\mathbf{Set}, R) of $\mathbf{RingTopos}$. Also $\text{Spec}(R)$ is a topological space, giving a topos $\mathbf{Sh}(\text{Spec}(R))$. It comes with a sheaf of local rings, giving a local ring \mathcal{O}_R in the topos $\mathbf{Sh}(\text{Spec}(R))$. So, the spectrum of R determines an object of $\mathbf{LocRingTopos}$. Theorem (Hakim) The right adjoint to the inclusion $\mathbf{LocRingTopos}$ maps (\mathbf{Set}, R) to $(\mathbf{Sh}(\text{Spec}(R)), \mathcal{O}_R)$, for all rings R. In this sense, Spec is exactly that right adjoint.
The spectrum as the free local ring

Let R be a ring.
The spectrum as the free local ring

Let \(R \) be a ring.

Then \(R \) is a ring in \(\textbf{Set} \), so determines an object \((\textbf{Set}, R)\) of \(\textbf{RingTopos} \).
The spectrum as the free local ring

Let R be a ring.

Then R is a ring in \textbf{Set}, so determines an object (\textbf{Set}, R) of $\textbf{RingTopos}$. Also $\text{Spec}(R)$ is a topological space, giving a topos $\text{Sh}(\text{Spec}(R))$.
The spectrum as the free local ring

Let \(R \) be a ring.

Then \(R \) is a ring in \(\textbf{Set} \), so determines an object \((\textbf{Set}, R)\) of \(\textbf{RingTopos} \).

Also Spec\((R)\) is a topological space, giving a topos \(\textbf{Sh}(\text{Spec}(R)) \).

It comes with a sheaf of local rings, giving a local ring \(O_R \) in the topos \(\textbf{Sh}(\text{Spec}(R)) \).
The spectrum as the free local ring

Let R be a ring.

Then R is a ring in \textbf{Set}, so determines an object (\textbf{Set}, R) of $\textbf{RingTopos}$.

Also $\text{Spec}(R)$ is a topological space, giving a topos $\textbf{Sh}(\text{Spec}(R))$.

It comes with a sheaf of local rings, giving a local ring O_R in the topos $\textbf{Sh}(\text{Spec}(R))$.

So, the spectrum of R determines an object $(\textbf{Sh}(\text{Spec}(R)), O_R)$ of $\textbf{LocRingTopos}$.

The spectrum as the free local ring

Let R be a ring.

Then R is a ring in \textbf{Set}, so determines an object (\textbf{Set}, R) of RingTopos. Also $\text{Spec}(R)$ is a topological space, giving a topos $\text{Sh}(\text{Spec}(R))$. It comes with a sheaf of local rings, giving a local ring O_R in the topos $\text{Sh}(\text{Spec}(R))$.

So, the spectrum of R determines an object $(\text{Sh}(\text{Spec}(R)), O_R)$ of LocRingTopos.

Theorem (Hakim)

The right adjoint to the inclusion $\text{LocRingTopos} \hookrightarrow \text{RingTopos}$ maps (\textbf{Set}, R) to $(\text{Sh}(\text{Spec}(R)), O_R)$, for all rings R.
The spectrum as the free local ring

Let R be a ring.

Then R is a ring in \textbf{Set}, so determines an object (\textbf{Set}, R) of RingTopos. Also $\text{Spec}(R)$ is a topological space, giving a topos $\text{Sh}(\text{Spec}(R))$. It comes with a sheaf of local rings, giving a local ring O_R in the topos $\text{Sh}(\text{Spec}(R))$. So, the spectrum of R determines an object $(\text{Sh}(\text{Spec}(R)), O_R)$ of LocRingTopos.

Theorem (Hakim)

The right adjoint to the inclusion $\text{LocRingTopos} \hookrightarrow \text{RingTopos}$ maps (\textbf{Set}, R) to $(\text{Sh}(\text{Spec}(R)), O_R)$, for all rings R. In this sense, Spec is exactly that right adjoint.
Perspectives

Hakim's theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring. So, this gives an abstract characterization of the spectrum of an operator.

However:

- To make the step from operators to rings, we used the characteristic polynomial. What is its place abstractly?
- The characterization of the spectrum of an operator coming from Hakim's theorem is less direct than the one established in this talk, which stays within the topos of sets.
Hakim’s theorem describes a universal property of the spectrum of a ring.
Hakim’s theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring.
Hakim’s theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring. So, this gives an abstract characterization of the spectrum of an operator.
Perspectives

Hakim’s theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring. So, this gives an abstract characterization of the spectrum of an operator.

However:
Perspectives

Hakim’s theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring. So, this gives an abstract characterization of the spectrum of an operator.

However:

- To make the step from operators to rings, we used the characteristic polynomial. What is its place abstractly?
Hakim’s theorem describes a universal property of the spectrum of a ring. The spectrum of a linear operator is a special case of the spectrum of a ring. So, this gives an abstract characterization of the spectrum of an operator.

However:

- To make the step from operators to rings, we used the characteristic polynomial. What is its place abstractly?
- The characterization of the spectrum of an operator coming from Hakim’s theorem is less direct than the one established in this talk, which stays within the topos of sets.